当前位置: 首页 > article >正文

Hive-架构与设计

架构与设计

  • 一、背景和起源
  • 二、框架概述
    • 1.设计特点
  • 三、架构图
    • 1.UI交互层
    • 2.Driver驱动层
    • 3.Compiler
    • 4.Metastore
    • 5.Execution Engine
  • 四、执行流程
    • 1.发起请求
    • 2.获取执行计划
    • 3.获取元数据
    • 4.返回元数据
    • 5.返回执行计划
    • 6.运行执行计划
    • 7.运行结果获取
  • 五、数据模型
    • 1.DataBase数据库
    • 2.Table表
      • 2.1 MANGED_TABLE 内部表
      • 2.2 EXTERNAL_TABLE 外部表
      • 2.3 INDEX_TABLE 索引表
      • 2.4 VIRTUAL_VIEW 视图表
    • 3.Partition分区
      • 3.1 静态分区
      • 3.2 动态分区
    • 4.Bucket桶
  • 总结
  • 参考链接


一、背景和起源

大数据存储和处理框架Hadoop提供了对数据的存储、分析、任务调度的处理。其中的MapReduce可以对数据进行处理和分析的,但是MapReduce的编程比较繁琐并且修改不方便,对于一些单次处理和交互式分析非常不便。为了支持对数据仓库中数据的分析、简化用户使用数仓门槛,基于Hadoop的一套数据仓库分析系统Hive应运而生。Hive将结构化数据文件映射为一张数据库表,提供了丰富的SQL查询方式分析存储在Hadoop分布式文件系统的数据。将查询SQL语句转化成MapReduce任务进行执行。

二、框架概述

1.设计特点

支持通过SQL对数据仓库中数据进行访问,比如提取、转化、加工、分析等
支持将不同数据格式添加数据结构
可以直接访问大数据存储系统中的文件,比如HDFS、HBase等

三、架构图

在这里插入图片描述
Hive是构建在Hadoop之上,会将SQL转化成MapReduce任务在Hadoop集群进行执行,然后将结果保存在HDFS上,整体架构如上。

1.UI交互层

用户提交查询和其他操作

2.Driver驱动层

接受用户sql语句
调用编译器对Sql语句进行编译
调用执行引擎进行任务的执行

3.Compiler

基于Metastore中元数据对语句进行语义分析和解析查询生成执行计划

4.Metastore

存储数仓中表和分区的元数据,包括列信息、列类型信息、序列化器和反序列化器、存储文件等。

5.Execution Engine

hive生成的执行计划是一个由Stages组成的逻辑DAG图,执行引擎主要是将逻辑DAG图在Hadoop上进行调度和执行,最后转化成MapReduce的map task或reduce task进行运算。

四、执行流程

在这里插入图片描述

1.发起请求

UI交互层发起执行请求到Driver驱动层

2.获取执行计划

Driver驱动层将用户请求发送到编译器获取执行计划

3.获取元数据

编译器将sql语句中相关表和分区信息发送到MetaStore获取相关元数据

4.返回元数据

MetaStore返回对应元数据

5.返回执行计划

根据表和分区的元数据对sql的解析和优化,生成逻辑执行计划。该计划是一个DAG图,每个stage对应一个MapReduce的map或者reduce操作。

6.运行执行计划

将执行计划发送到Execution Engine,执行引擎会将逻辑执行计划提交到Hadoop中以MapReduce形式进行执行。

7.运行结果获取

UI交互层获取运行结果。

五、数据模型

hive主要将数据以以下几种数据模型进行组织,分别是DataBase、Table、Partition和Bucket。

1.DataBase数据库

相当于关系型数据中的命名空间,将数据库中数据隔离到不同的数据库模型中。

2.Table表

表是由描述表的元数据和存储的数据组成。数据存储在分布式文件系统中,元数据存储在关系型数据库中。表对应分布式文件系统的一个目录。Hive表分为以下四种:

2.1 MANGED_TABLE 内部表

内部表数据是由hive进行存储和管理的,默认存储位置为/user/hive/warehouse目录。

2.2 EXTERNAL_TABLE 外部表

外部表数据不会存储到hive相关目录下。当删除外部表时,hive只删除表的元数据,不会删除表数据。

2.3 INDEX_TABLE 索引表

索引表是为了提高表某些列的查询速度,包含指定列的值、对应的HDFS文件路径、偏移量的一张表。当查询时可以利用此索引表提高查询速度,避免全表扫描。

2.4 VIRTUAL_VIEW 视图表

视图是一组数据的逻辑表示,是sql语句的结果集

3.Partition分区

分区是根据表的某列值划分为不同分区,分区对应分布式系统中表目录下的一个子目录。分区基于分区键把具有相同分区键值的数据存储在一个子目录下。分区有两种类型:

3.1 静态分区

静态分区的分区数量和分区值都是固定的,新增分区和加载数据到分区时,需要提前指定分区名。

3.2 动态分区

动态分区的分区数量和分区值都是不确定的,会根据数据值自动创建新的分区。

4.Bucket桶

hive还支持将表或者分区中数据更细粒度的划分为桶,每个桶的数据对应分布式系统中子目录下的一个文件。

分桶表创建命令:

CREATE TABLE table_name

PARTITIONED BY (partition1 data_type, partition2 data_type,.) 

CLUSTERED BY (column_name1, column_name2,) 

SORTED BY (column_name [ASC|DESC],)] 

INTO num_buckets BUCKETS;

总结

Hive是一个基于Hadoop的数仓分析工具,将分布式系统中的数据映射成结构化数据。提供丰富的SQL查询方式对数仓中的数据进行访问。一般不会存储数据、只会保存元数据到Hive中。Hive根据元数据信息将查询语句转化成执行计划,此执行计划由stage组成的DAG图,调用Hadoop中的MapReduce运行执行计划得到对应结果。


参考链接

1.Apache Hive
2.Hive Home
3.Hive Architecture


http://www.kler.cn/a/234026.html

相关文章:

  • Llama架构及代码详解
  • 深度学习之 LSTM
  • Spark 核心概念与宽窄依赖的详细解析
  • [ComfyUI]Flux:繁荣生态魔盒已开启,6款LORA已来,更有MJ6写实动漫风景艺术迪士尼全套
  • 【机器学习】平均绝对误差(MAE:Mean Absolute Error)
  • 河南省的一级科技查新机构有哪些?
  • CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量
  • vue3跨组件(多组件)通信:事件总线【Event Bus】
  • 修改GI文件的权限
  • 双活工作关于nacos注册中心的数据迁移
  • C#系列-C#访问MongoDB+redis+kafka(7)
  • Avalonia学习(二十三)-大屏
  • 方格定位2_题解
  • Qt安装配置教程windows版(包括:Qt5.8.0版本,Qt5.12,Qt5.14版本下载安装教程)(亲测可行)
  • STM32 FSMC (Flexible static memory controller) 灵活静态内存控制器介绍
  • Android java基础_类的继承
  • python如何用glob模块匹配路径
  • Lua Global环境
  • 时间序列预测——BiGRU模型
  • 应急响应-挖矿木马-常规处置方法
  • notepad++成功安装后默认显示英文怎么设置中文界面?
  • 突破编程_C++_面试(基础知识(10))
  • 学习笔记——ENM模拟
  • 微服务学习 | Spring Cloud 中使用 Sentinel 实现服务限流
  • 零基础学编程从入门到精通,系统化的编程视频教程上线,中文编程开发语言工具构件之缩放控制面板构件用法
  • Centos 7系统安装proftpd-1.3.8过程