当前位置: 首页 > article >正文

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测

目录

    • 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)
RF-AdaBoost是一种将RF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RF-AdaBoost算法的基本思想是将RF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量时序预测;
4.data为数据集,excel数据,前多列输入,最后1列输出,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价.
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式资源处下载Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测。
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
function Y_hat = regRF_predict(p_train, model)
    % requires 2 arguments
    % p_train: data matrix
    % model: generated via regRF_train function

	if nargin ~= 2
		error('need atleast 2 parameters, X matrix and model');
	end
	
	Y_hat = mexRF_predict(p_train', model.lDau, model.rDau, model.nodestatus, model.nrnodes, ...
        model.upper, model.avnode, model.mbest, model.ndtree, model.ntree);
    
    if ~isempty(find(model.coef, 1)) % for bias corr
        Y_hat = model.coef(1) + model.coef(2) * Y_hat;
    end

	clear mexRF_predict

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501


http://www.kler.cn/a/234202.html

相关文章:

  • 408笔记合集
  • 【常见问题解答】远程桌面无法复制粘贴的解决方法
  • 【安全通信】告别信息泄露:搭建你的开源视频聊天系统briefing
  • 学法减分交管12123模拟练习小程序源码前端和后端和搭建教程
  • 大厂的 404 页面都长啥样?看看你都见过吗~~~
  • 山泽光纤HDMI线:铜线的隐藏力量
  • hexo 博客搭建以及踩雷总结
  • 面向对象编程:理解其核心概念与应用
  • linux上部署ftp服务
  • MongoDB聚合:$replaceWith
  • visual studio和cmake如何编译dlib库
  • 深入了解 MySQL 数值型函数
  • Linux文本三剑客(2)
  • 【前后端的那些事】2万字详解WebRTC + 入门demo代码解析
  • 发送get请求并且发送请求头(header),java实现
  • linux系统非关系型数据库redis
  • re:从0开始的CSS学习之路 10. 盒子模型的溢出
  • Python OCR 之旅:PaddleOCR 与 pytesseract 比较及应用
  • 02 动力云客之登陆界面
  • MySQL 的UI
  • vue+springboot前后端视频文件等的上传与展示(基于七牛云)
  • c语言的各类输出函数(带完善更新)
  • 数据分析基础之《pandas(6)—高级处理》
  • uniapp 本地存储的方式
  • 156基于Matlab的光纤陀螺随机噪声和信号
  • 「优选算法刷题」:数青蛙