当前位置: 首页 > article >正文

C++ 内存管理(newdelete)

目录

本节目标

 1. C/C++内存分布

 2. C语言中动态内存管理方式:malloc/calloc/realloc/free

3. C++内存管理方式

 3.1 new/delete操作内置类型

3.2 new和delete操作自定义类型 

 4. operator new与operator delete函数

 5. new和delete的实现原理

 6. 定位new表达式(placement-new)

 7. 常见面试题

7.1 malloc/free和new/delete的区别

 7.2 内存泄漏


本节目标

1. C/C++内存分布
2. C语言中动态内存管理方式
3. C++中动态内存管理
4. operator new与operator delete函数
5. new和delete的实现原理
6. 定位new表达式(placement-new)
7. 常见面试题


 1. C/C++内存分布

我们先来看下面的一段代码和相关问题
 

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}

1. 选择题:
选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

globalVar在哪里?__1__
staticVar在哪里?__3__
num1 在哪里?__5__
staticGlobalVar在哪里?__2__
localVar在哪里?__4__
这几个空都十分简单:答案为C C C A  A。1 很明显为全局变量,存在静态区;2,3都为静态变量,所以也在静态区;4 是函数中无任何修饰的整型变量,因此存在栈区;5 num1 是数组名,是数组的首元素地址,当然也存在栈区。
char2在哪里?__1__
pChar3在哪里?__3__
ptr1在哪里?__5__
*char2在哪里?__2_
*pChar3在哪里?__4__
*ptr1在哪里?___6_

这几题答案为:A A A D A B。

1 常量区有一串字符串为“abcd\0”,用这个字符串去初始化char2,它会在栈上开辟一个数组然后把字符串拷贝到栈上,char2也在栈上 ;

2 *char2 就是a,当然也在栈上;

3 是const修饰的,但并不代表它在常量区,他只是常变量,看下面这个例子,a和b都是在栈区的。pchar3是一个const修饰的指针变量存在栈区,

4 它指向常量区的字符串,*pchar就是常量区字符串a的地址,因此*pchar3存在常量区;

5 ptr1只是一个指针变量它存在栈区,

6但ptr1指向了堆区,所以*ptr1在堆区。

【说明】
1. 又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。
2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
创建共享共享内存,做进程间通信。(Linux课程如果没学到这块,现在只需要了解一下)
3. 用于程序运行时动态内存分配,堆是可以上增长的。
4. 数据段--存储全局数据和静态数据。
5. 代码段--可执行的代码/只读常量。 


 2. C语言中动态内存管理方式:malloc/calloc/realloc/free

void Test()
{
	int* p1 = (int*)malloc(sizeof(int));
	free(p1);
	// 1.malloc/calloc/realloc的区别是什么?
	int* p2 = (int*)calloc(4, sizeof(int));
	int* p3 = (int*)realloc(p2, sizeof(int) * 10);
	// 这里需要free(p2)吗?
	free(p3);
}

*1. malloc/calloc/realloc 的区别**

* **malloc()**:malloc() 函数用于在堆内存中分配一块指定大小的内存空间。该函数返回一个指向该内存空间的指针。如果内存分配成功,则返回该内存空间的地址;如果内存分配失败,则返回 NULL。

* **calloc()**:calloc() 函数用于在堆内存中分配一块指定大小的内存空间,并将其初始化为 0。该函数返回一个指向该内存空间的指针。如果内存分配成功,则返回该内存空间的地址;如果内存分配失败,则返回 NULL。

* **realloc()**:realloc() 函数用于改变一块已分配内存空间的大小。该函数返回一个指向该内存空间的指针。如果内存重新分配成功,则返回该内存空间的地址;如果内存重新分配失败,则返回 NULL。

**2. 这里需要 free(p2) 吗?

** 不需要。 当我们使用 realloc() 函数重新分配一块内存空间时,realloc() 函数会自动释放原有内存空间。因此,我们不需要再手动释放原有内存空间。 如果我们手动释放原有内存空间,则会导致内存泄漏。


3. C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。


 3.1 new/delete操作内置类型

void Test()
{
	// 动态申请一个int类型的空间
	int* ptr4 = new int;
	// 动态申请一个int类型的空间并初始化为10
	int* ptr5 = new int(10);
	// 动态申请10个int类型的空间
	int* ptr6 = new int[3];
	delete ptr4;
	delete ptr5;
	delete[] ptr6;
}

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用。


3.2 new和delete操作自定义类型 

new用法的演示(与malloc对比):

1.用法上,变简洁了

    int* p0 = (int*)malloc(sizeof(int));
	int* p1 = new int;
	int* p2 = new int[10]; // new 10个int对象

malloc创建空间是调用函数的方式,而new则是关键字的方式,方便了很多。

2.可以控制初始化

    int* p3 = new int(10); // new 1个int对象,初始化成10
	//在堆上开一个数组,并完成初始化
	int* p4 = new int[10] { 1, 2, 3, 4, 5 };

3.自定义类型,开空间+构造函数

下面以创建单链表为例:

这是单链表的方法:一个节点一个节点的开

struct ListNode* CreateListNode(int val)
{
	struct ListNode* newnode = (struct ListNode*)malloc(sizeof(struct ListNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return NULL;
	}

	newnode->_next = NULL;
	newnode->_val = val;
	return newnode;
}

再看new的方法:直接开空间+构造函数

这样就创造出来了三个结点。

	struct ListNode
{
	ListNode* _next;
	int _val;

	ListNode(int val)
		:_next(nullptr)
		, _val(val)
	{}
};
    ListNode* node1 = new ListNode(1);
	ListNode* node2 = new ListNode(2);
	ListNode* node3 = new ListNode(3);

接下来我使用new,尾插一个链表:

struct ListNode
{
	ListNode* _next;
	int _val;

	ListNode(int val)
		:_next(nullptr)
		, _val(val)
	{}
};

ListNode* CreateList(int n)
{
	ListNode head(-1);  // 哨兵位

	ListNode* tail = &head;
	int val;
	printf("请依次输入%d个节点的值:>", n);
	for (size_t i = 0; i < n; i++)
	{
		cin >> val;
		tail->_next = new ListNode(val);
		tail = tail->_next;
	}

	return head._next;
}
int main()
{
	ListNode* list1 = CreateList(5);
	delete list1;
	return 0;
}

在上面程序中使用new开空间,并没有对new进行检查是否成功开出了空间???

4.new失败了以后抛异常,不需要手动检查

这是因为new会抛出异常。

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。


 4. operator new与operator delete函数

 new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行空 间不足应对措施,如果改应对措施用户设置了,则继续申请,否
则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK); /* block other threads */
	__TRY
		/* get a pointer to memory block header */
		pHead = pHdr(pUserData);
	/* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK); /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
那么这层关系到这里就清晰了:operator new和operator delete的意义就是实现new和delete


 5. new和delete的实现原理

 一、内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
二、自定义类型
new的原理
1. 调用operator new函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用operator delete函数释放对象的空间
new T[N]的原理
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
象空间的申请
2. 在申请的空间上执行N次构造函数
delete[]的原理
1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
放空间
 

注意:请看下面代码

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}

	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};

int main()
{
	A* p = new A[10];

	delete[] p;
	return 0;
}

        我们给了p开了10 个A类型的空间,A中只有一个整型,大小为4,那么10个A的大小就是40,可事实是这个样吗?显然不是,我们在汇编的层面看到p被开了大小44字节的空间,这是为什么呢?

这是因为,p所指向的空间开头要存放对象的个数,当delete[]的时候,才知道调用多少次析构函数。

        但如果是内置类型的话就只会开40个字节的空间,因为内置类型在delete[]的时候是不调用析构函数的.

        当没有为 A 类定义析构函数时,编译器会自动为该类生成一个默认的析构函数。默认的析构函数不会执行任何操作,因此不会释放对象占用的内存空间,在这种情况下,就只会开40个字节大小的空间。

 6. 定位new表达式(placement-new)

 定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表
使用场景:

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
// 定位new/replacement new
int main()
{
	// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没
	//有执行
		A* p1 = (A*)malloc(sizeof(A));
	new(p1)A; // 注意:如果A类的构造函数有参数时,此处需要传参
	p1->~A();
	free(p1);
	A* p2 = (A*)operator new(sizeof(A));
	new(p2)A(10);
	p2->~A();
	operator delete(p2);
	return 0;
}


 7. 常见面试题


7.1 malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:
1. malloc和free是函数,new和delete是操作符
2. malloc申请的空间不会初始化,new可以初始化
3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需
要捕获异常
6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理
 


 7.2 内存泄漏

什么是内存泄漏,内存泄漏的危害
什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。
 

void MemoryLeaks()
{
// 1.内存申请了忘记释放
int* p1 = (int*)malloc(sizeof(int));
int* p2 = new int;
// 2.异常安全问题
int* p3 = new int[10];
Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
delete[] p3;
}

内存泄漏分类(了解)
C/C++程序中一般我们关心两种方面的内存泄漏:

  • 堆内存泄漏(Heap leak)

堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一
块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分
内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

  • 系统资源泄漏

指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放
掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。
如何检测内存泄漏(了解)
在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。
 

int main()
{
    int* p = new int[10];
    // 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏
    _CrtDumpMemoryLeaks();
    return 0;
}

// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置
Detected memory leaks!
Dumping objects ->
{79} normal block at 0x00EC5FB8, 40 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
Object dump complete.

因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。
如何避免内存泄漏
1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
2. 采用RAII思想或者智能指针来管理资源。
3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
总结一下:
内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。
 

 


http://www.kler.cn/a/234580.html

相关文章:

  • 开源项目推荐——OpenDroneMap无人机影像数据处理
  • SQL集合运算
  • Linux源码阅读笔记-V4L2框架基础介绍
  • Could not initialize class sun.awt.X11FontManager
  • WebAssembly在现代Web开发中的应用
  • golang如何实现sse
  • 渗透专用虚拟机(公开版)
  • [linux c]linux do_div() 函数用法
  • MySQL篇----第十九篇
  • HarmonyOS 开发学习笔记
  • eclipse4.28.0版本如何安装FatJar插件
  • python:xml.etree 生成思维导图 Freemind文件
  • 【HTTP】localhost和127.0.0.1的区别是什么?
  • vue3学习——封装菜单栏
  • lua:有关表访问的metamethod
  • 【DDD】学习笔记-精炼领域分析模型
  • 设计模式-观察者模式 Observer
  • 第77讲用户管理功能实现
  • 指针的基本含义及其用法
  • limit深度分页和优化思路
  • Docker 基本介绍
  • 正则可视化工具:学习和编写正则表达式的利器
  • excel统计分析——成组设计和配对设计
  • 微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域
  • 医院挂号预约|医院挂号预约小程序|基于微信小程序的医院挂号预约系统设计与实现(源码+数据库+文档)
  • disql备份还原