当前位置: 首页 > article >正文

探索NLP中的N-grams:理解,应用与优化

简介

n-gram[1] 是文本文档中 n 个连续项目的集合,其中可能包括单词、数字、符号和标点符号。 N-gram 模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。 N-gram 建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。 n-gram 的替代方法是词嵌入技术,例如 word2vec。N-grams 广泛用于文本挖掘和自然语言处理任务。

示例

通过计算每个唯一的 n 元语法在文档中出现的次数,可以创建包含 n 元语法的语言模型。这称为 bag-of-n-grams 模型。

alt

例如[2],对于“The cow jumps over the moon”这句话。如果 N=2(称为二元模型),那么 ngram 将为:

  • the cow
  • cow jumps
  • jumps over
  • over the
  • the moon

所以在这种情况下你有 5 个 n 元语法。请注意,我们从 the->cow 转移到 cow->jumps 到 Jumps->over 等,本质上是向前移动一个单词以生成下一个二元组。

如果 N=3,则 n 元语法将为:

  • the cow jumps
  • cow jumps over
  • jumps over the
  • over the moon

所以在这种情况下你有 4 个 n 元语法。当 N=1 时,这被称为一元语法,本质上是句子中的各个单词。当 N=2 时,称为二元组;当 N=3 时,称为三元组。当N>3时,这通常被称为多元组等等。

  • 一个句子中有多少个 N-gram?

如果 X=给定句子 K 中的单词数量,则句子 K 的 n-gram 数量为:

alt

N-gram 有什么用?

N-gram 用于各种不同的任务。例如,在开发语言模型时,n-gram 不仅用于开发一元模型,还用于开发二元模型和三元模型。谷歌和微软开发了网络规模的 n-gram 模型,可用于各种任务,例如拼写纠正、断词和文本摘要。以下是 Microsoft 公开提供的网络规模 n-gram 模型:http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx。这是一篇使用 Web N-gram 模型进行文本摘要的论文:Micropinion Generation: An Unsupervised Approach to Generating Ultra-Concise Summaries of Opinions

n-gram 的另一个用途是为有监督的机器学习模型(例如 SVM、MaxEnt 模型、朴素贝叶斯等)开发特征。其想法是在特征空间中使用二元语法等标记,而不仅仅是一元语法。但请注意,根据我的个人经验和我审阅的各种研究论文,在特征空间中使用二元组和三元组不一定会产生任何显着的改进。

Code

在 python 中生成 n-gram。

import re

def generate_ngrams(text,n):

    # split sentences into tokens
    tokens=re.split("\\s+",text)
    ngrams=[]

    # collect the n-grams
    for i in range(len(tokens)-n+1):
       temp=[tokens[j] for j in range(i,i+n)]
       ngrams.append(" ".join(temp))

    return ngrams

如果您使用的是 Python,还有另一种使用 NLTK 的方法:

from nltk import ngrams

sentence = '_start_ this is ngram _generation_'
my_ngrams = ngrams(sentence.split(), 3)
Reference
[1]

N-gram: https://www.mathworks.com/discovery/ngram.html

[2]

What: https://kavita-ganesan.com/what-are-n-grams/

本文由 mdnice 多平台发布


http://www.kler.cn/a/234680.html

相关文章:

  • WSL2上Ubuntu22.04安装Docker
  • 7.C语言 宏(Macro) 宏定义,宏函数
  • Dots 常用操作
  • PyQt5 学习方法之悟道
  • 【ES6复习笔记】Class类(15)
  • 【ES6复习笔记】模板字符串(3)
  • 【Web】Spring rce CVE-2022-22965漏洞复现学习笔记
  • 《CSS 简易速速上手小册》第8章:CSS 性能优化和可访问性(2024 最新版)
  • 格式化dingo返回内容
  • 算法竞赛进阶指南——基本算法(倍增)
  • NGINX upstream、stream、四/七层负载均衡以及案例示例
  • python从入门到精通(十八):python爬虫的练习案列集合
  • 【高阶数据结构】B-树详解
  • 如何入门AI Agent?
  • C++函数对象-运算符函数对象 - 逻辑运算 - 实现 !x 的函数对象 (std::logical_not)
  • Java 集合、迭代器
  • 跟着cherno手搓游戏引擎【24】开启2D引擎前的项目总结(包括前置知识汇总)
  • 【大厂AI课学习笔记】【1.6 人工智能基础知识】(2)机器学习
  • 07-Java桥接模式 ( Bridge Pattern )
  • 网络学习:数据链路层VLAN原理和配置
  • tkinter-TinUI-xml实战(10)展示画廊
  • mac卸载被锁定的app
  • 《CSS 简易速速上手小册》第4章:视觉美学(2024 最新版)
  • Python for 循环
  • 常见性能优化策略
  • CVE-2012-2311 漏洞复现