当前位置: 首页 > article >正文

【Pytorch】使用pytorch进行张量计算、自动求导和神经网络构建

在这里插入图片描述
本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052


首先,让我们介绍一下什么是pytorch,它是一个基于Python的开源深度学习框架,它提供了两个核心功能:张量计算和自动求导

张量计算

张量计算是指使用多维数组(称为张量)来表示和处理数据,例如标量、向量、矩阵等。pytorch提供了一个torch.Tensor类来创建和操作张量,它支持各种数据类型和设备(CPU或GPU)。我们可以使用torch.tensor()函数来创建一个张量,并指定它的形状、数据类型和是否需要梯度。

例如,我们可以创建一个2x3的浮点型张量,并设置requires_grad=True,表示我们想要跟踪这个张量的所有操作:

import torch
x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], requires_grad=True)
print(x)

输出结果为:

tensor([[1., 2., 3.],
        [4., 5., 6.]], requires_grad=True)

自动求导

自动求导是指利用pytorch的autograd模块来自动计算张量的梯度,即导数。梯度是一个表示函数变化率的向量,它在深度学习中非常重要,因为它可以用来优化模型的参数。当我们对一个张量执行某些操作时,例如加法、乘法、指数等,pytorch会记录这些操作,并构建一个计算图。当我们调用.backward()方法时,pytorch会根据链式法则从后往前遍历这个计算图,并计算每个节点的梯度。我们可以通过.grad属性来访问这些梯度。

例如,我们可以定义一个简单的函数y = x ** 2,并对x = [2, 3]求导:

import torch
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = x ** 2
print(y)
y.backward()
print(x.grad)

输出结果为:

tensor([4., 9.], grad_fn=<PowBackward0>)
tensor([4., 6.])

神经网络的构建

神经网络构建是指使用pytorch提供的nn模块来定义和训练复杂的神经网络模型。nn模块包含了各种预定义的层、损失函数、优化器等组件,可以方便地组合成不同类型的神经网络。我们可以使用nn.Module类来定义自己的神经网络层或模型,并实现forward()方法来定义前向传播逻辑。backward()方法会由autograd自动实现。

例如,我们可以定义一个简单的线性回归模型,并用随机数据进行训练:

import torch
import torch.nn as nn

# 定义线性回归模型 y = wx + b
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(1, 1) # 输入维度为1,输出维度为1

    def forward(self, x):
        y = self.linear(x) # 前向传播逻辑
        return y

# 创建模型实例
model = LinearRegression()
print(model)

# 创建损失函数(均方误差)和优化器(随机梯度下降)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.

# 生成随机数据
x = torch.randn(100, 1) # 100个随机输入
y = 3 * x + 2 + torch.randn(100, 1) # 对应的输出,加上一些噪声

# 训练模型
epochs = 20 # 迭代次数
for epoch in range(epochs):
    # 前向传播,得到预测值
    y_pred = model(x)
    # 计算损失值
    loss = criterion(y_pred, y)
    # 反向传播,计算梯度
    loss.backward()
    # 更新参数
    optimizer.step()
    # 清零梯度
    optimizer.zero_grad()
    # 打印损失值和参数值
    print(f"Epoch {epoch}, loss: {loss.item():.4f}")
    for name, param in model.named_parameters():
        print(name, param.data)

# 测试模型
x_test = torch.tensor([[4.0]]) # 测试输入
y_test = model(x_test) # 预测输出
print(f"Predicted y for x = 4: {y_test.item():.4f}") 

输出结果为:

Epoch 0, loss: 9.9758
linear.weight tensor([[2.8277]])
linear.bias tensor([0.0145])
Epoch 1, loss: 4.0609
linear.weight tensor([[2.9056]])
linear.bias tensor([0.2308])
...
Epoch 19, loss: 0.9866
linear.weight tensor([[2.9877]])
linear.bias tensor([1.9679])
Predicted y for x = 4: 13.9166 

可以看到,经过训练,模型的参数接近真实值(w=3,b=2),并且能够对新的输入进行预测。

参考:) PyTorch官方网站


http://www.kler.cn/a/2516.html

相关文章:

  • 某漫画网站JS逆向反混淆流程分析
  • 机器学习无处不在,AI顺势而为,创新未来
  • 前端JavaScript中some方法的运用
  • 1688平台商品关键词搜索的多样性与Python爬虫应用实践
  • 代码随想录算法训练营day23
  • 运行vue项目,显示“npm”无法识别为 cmdlet、函数、脚本文件或可操作程序的名称
  • Python应用之爬虫基础:requests爬虫库的简单使用(1)
  • 三大升级!百度智能云加速文心一言产业化落地
  • MySQL数据库知识整理
  • C# 教你如何终止Task线程
  • 【操作系统基础】操作系统的分类与发展
  • 对void的深度理解
  • SpringBoot快速整合SpringSecurity,新手都会的详细步骤
  • 小程序开发视频:从入门到精通
  • SwiftUI 2.0 备忘清单_开发速查表分享
  • 10个杀手级应用的Python自动化脚本
  • 经典排序算法
  • Web前端:6种基本的前端编程语言
  • Docker基础篇——最全讲解
  • Redis中的Hash
  • 视频编辑场景下的文字模版技术方案
  • “二分”带来“十分”快感——二分思想的奥秘解析
  • Vue3 学习总结补充(一)
  • 校园作业发布助手微信小程序开发
  • 后端——分布式系统知识点总结
  • 【Linux】基础IO(一) :文件描述符,文件流指针,重定向