当前位置: 首页 > article >正文

Spark Streaming DStream的操作

一、DStream的定义

DStream是离散流,Spark Streaming提供的一种高级抽象,代表了一个持续不断的数据流。DStream可以通过输入数据源来创建,比如Kafka、Flume,也可以通过对其他DStream应用高阶函数来创建,比如map、reduce、join、window。
DStream的内部,其实是一系列持续不断产生的RDD,RDD是Spark Core的核心抽象,即不可变的,分布式的数据集。
对DStream应用的算子,其实在底层会被翻译为对DStream中每个RDD的操作,比如对一个DStream执行一个map操作,会产生一个新的DStream,其底层原理为,对输入DStream中的每个时间段的RDD,都应用一遍map操作,然后生成的RDD,即作为新的DStream中的那个时间段的一个RDD。

二、DStream的操作

1,普通的转换操作

转换描述
map(func)源 DStream的每个元素通过函数func返回一个新的DStream。
flatMap(func)类似与map操作,不同的是每个输入元素可以被映射出0或者更多的输出元素。
filter(func)在源DSTREAM上选择Func函数返回仅为true的元素,最终返回一个新的DSTREAM 。
repartition(numPartitions)通过输入的参数numPartitions的值来改变DStream的分区大小。
union(otherStream)返回一个包含源DStream与其他 DStream的元素合并后的新DSTREAM。
count()对源DStream内部的所含有的RDD的元素数量进行计数,返回一个内部的RDD只包含一个元素的DStreaam。
reduce(func)使用函数func(有两个参数并返回一个结果)将源DStream 中每个RDD的元素进行聚 合操作,返回一个内部所包含的RDD只有一个元素的新DStream。
countByValue()计算DStream中每个RDD内的元素出现的频次并返回新的DStream[(K,Long)],其中K是RDD中元素的类型,Long是元素出现的频次。
reduceByKey(func, [numTasks])当一个类型为(K,V)键值对的DStream被调用的时候,返回类型为类型为(K,V)键值对的新 DStream,其中每个键的值V都是使用聚合函数func汇总。注意:默认情况下,使用 Spark的默认并行度提交任务(本地模式下并行度为2,集群模式下位8),可以通过配置numTasks设置不同的并行任务数。
join(otherStream, [numTasks])当被调用类型分别为(K,V)和(K,W)键值对的2个DStream 时,返回类型为(K,(V,W))键值对的一个新 DSTREAM。
cogroup(otherStream, [numTasks])当被调用的两个DStream分别含有(K, V) 和(K, W)键值对时,返回一个(K, Seq[V], Seq[W])类型的新的DStream。
transform(func)通过对源DStream的每RDD应用RDD-to-RDD函数返回一个新的DStream,这可以用来在DStream做任意RDD操作。
updateStateByKey(func)返回一个新状态的DStream,其中每个键的状态是根据键的前一个状态和键的新值应用给定函数func后的更新。这个方法可以被用来维持每个键的任何状态数据。

2,窗口转换函数

转换描述
window(windowLength, slideInterval)返回一个基于源DStream的窗口批次计算后得到新的DStream。
countByWindow(windowLength,slideInterval)返回基于滑动窗口的DStream中的元素的数量。
reduceByWindow(func, windowLength,slideInterval)基于滑动窗口对源DStream中的元素进行聚合操作,得到一个新的DStream。
reduceByKeyAndWindow(func,windowLength, slideInterval, [numTasks])基于滑动窗口对(K,V)键值对类型的DStream中的值按K使用聚合函数func进行聚合操作,得到一个新的DStream。
reduceByKeyAndWindow(func, invFunc,windowLength, slideInterval, [numTasks])一个更高效的reduceByKkeyAndWindow()的实现版本,先对滑动窗口中新的时间间隔内数据增量聚合并移去最早的与新增数据量的时间间隔内的数据统计量。例如,计算t+4秒这个时刻过去5秒窗口的WordCount,那么我们可以将t+3时刻过去5秒的统计量加上[t+3,t+4]的统计量,在减去[t-2,t-1]的统计量,这种方法可以复用中间三秒的统计量,提高统计的效率。
countByValueAndWindow(windowLength,slideInterval, [numTasks])基于滑动窗口计算源DStream中每个RDD内每个元素出现的频次并返回DStream[(K,Long)],其中K是RDD中元素的类型,Long是元素频次。与countByValue一样,reduce任务的数量可以通过一个可选参数进行配置。

在Spark Streaming中,数据处理是按批进行的,而数据采集是逐条进行的。因此在Spark Streaming中会先设置好批处理间隔(batch duration),当超过批处理间隔的时候就会把采集到的数据汇总起来成为一批数据交给系统去处理。

对于窗口操作而言,在其窗口内部会有N个批处理数据,批处理数据的大小由窗口间隔(window duration)决定,而窗口间隔指的就是窗口的持续时间,在窗口操作中,只有窗口的长度满足了才会触发批数据的处理。除了窗口的长度,窗口操作还有另一个重要的参数就是滑动间隔(slide duration),它指的是经过多长时间窗口滑动一次形成新的窗口,滑动窗口默认情况下和批次间隔的相同,而窗口间隔一般设置的要比它们两个大。

3,输出操作

转换描述
print()在Driver中打印出DStream中数据的前10个元素。
saveAsTextFiles(prefix, [suffix])将DStream中的内容以文本的形式保存为文本文件,其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。
saveAsObjectFiles(prefix, [suffix])将DStream中的内容按对象序列化并且以SequenceFile的格式保存。其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。
saveAsHadoopFiles(prefix, [suffix])将DStream中的内容以文本的形式保存为Hadoop文件,其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。
foreachRDD(func)最基本的输出操作,将func函数应用于DStream中的RDD上,这个操作会输出数据到外部系统,比如保存RDD到文件或者网络数据库等。需要注意的是func函数是在运行该streaming应用的Driver进程里执行的。

三、常用操作详解

1,transform(func)

该transform操作(转换操作)及其类似的transformWith操作,允许在DStream上应用任意的RDD-to-RDD函数。它可以实现DStream API中未提供的操作,比如两个数据流的连接操作。
示例代码:

val spamInfoRDD = ssc.sparkContext.newAPIHadoopRDD(...) // RDD containing spam information

val cleanedDStream = wordCounts.transform { rdd =>
  rdd.join(spamInfoRDD).filter(...) // join data stream with spam information to do data cleaning
  ...
}

2,updateStateByKey操作

使用的一般操作都是不记录历史数据的,也就说只记录当前定义时间段内的数据,跟前后时间段无关。如果要统计历史时间内的总共数据并且实时更新,如何解决呢?该updateStateByKey操作可以让你保持任意状态,同时不断有新的信息进行更新。

要使用updateStateByKey操作,必须进行下面两个步骤 :
(1)定义状态: 状态可以是任意的数据类型。
(2)定义状态更新函数:用一个函数指定如何使用先前的状态和从输入流中获取的新值更新状态。
对DStream通过updateStateByKey(updateFunction)来实现实时更新。

更新函数有两个参数 :
(1)newValues是当前新进入的数据。
(2)runningCount 是历史数据,被封装到了Option中。

示例:
首先我们需要了解数据的类型
编写处理方法
封装结果
代码:

//定义更新函数
//我们这里使用的Int类型的数据,因为要做统计个数
def updateFunc(newValues : Seq[Int],state :Option[Int])Some[Int] = {
 //传入的newVaules将当前的时间段的数据全部保存到Seq中
 //调用foldLeft(0)(_+_) 从0位置开始累加到结束   
 val currentCount = newValues.foldLeft(0)(_+_) 
 //获取历史值,没有历史数据时为None,有数据的时候为Some
 //getOrElse(x)方法,如果获取值为None则用x代替
 val  previousCount = state.getOrElse(0)
 //计算结果,封装成Some返回
 Some(currentCount+previousCount) 
}
//使用
val stateDStream = DStream.updateStateByKey[Int](updateFunc)

http://www.kler.cn/a/2692.html

相关文章:

  • Rust 中调用 Drop 的时机
  • ubuntu 20.04 安装 5.4 内核
  • 机器人技术:ModbusTCP转CCLINKIE网关应用
  • Qt QDockWidget详解以及例程
  • 【OJ刷题】同向双指针问题
  • LeetCode 3019.按键变更的次数:遍历(转小写)
  • uni-app+uView如何轮播图滑动时改变背景颜色和导航栏颜色
  • Mybatis(二):实现“增删改查”
  • 加载Word2Vec模型时候出现的错误总结
  • 具备人脸识别功能的多目标在线实时行为检测(yolov5+deepsort+slowfast)
  • [数据结构]直接插入排序、希尔排序
  • gns3:动态路由(ospf) area0 骨干网络(域间)(ABR)+ ospf 连接 rip (外部)(ASBR)+ 区域划分
  • tiles-api-2.0.4 升级tiles3.0.8遇到的问题
  • 三十七、实战演练之接口自动化平台的文件上传
  • MyBatisPlus的Wrapper使用示例
  • 在linux上安装配置nodejs工具,设置环境变量,设置npm国内镜像源,提高下载速度。
  • 深度学习应用技巧4-模型融合:投票法、加权平均法、集成模型法
  • cjson文件格式介绍
  • 音视频开发—MediaCodec 解码H264/H265码流视频
  • SpringBoot 结合RabbitMQ与Redis实现商品的并发下单【SpringBoot系列12】
  • Linux下的指令(常用的指令,以及案例展示)
  • QEMU启动ARM32 Linux内核
  • Thread类的基本用法
  • linux信号理解
  • spring5(四):IOC 操作 Bean 管理(基于注解方式)
  • SQL优化13连问,收藏好!