当前位置: 首页 > article >正文

数值分析复习:Newton插值

文章目录

  • 牛顿(Newton)插值
    • 插值条件
    • 基函数
    • 插值多项式
    • 差商
      • 差商的基本性质
      • 差商估计
      • 差商的Leibniz公式
    • 余项估计

本篇文章适合个人复习翻阅,不建议新手入门使用

牛顿(Newton)插值

插值条件

n+1个插值节点 x 0 , x 1 , … , x n x_0,x_1,\dots,x_n x0,x1,,xn 处函数值相同

基函数

{ ω i ( x ) } i = 0 n \{\omega_i(x)\}_{i=0}^n {ωi(x)}i=0n,其中 ω i ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x i − 1 ) \omega_i(x)=(x-x_0)(x-x_1)\cdots(x-x_{i-1}) ωi(x)=(xx0)(xx1)(xxi1)称之为节点多项式

插值多项式

∏ n f ( x ) = ∑ i = 0 n f [ x 0 , x 1 , … , x k ] ω k ( x ) \prod_nf(x)=\sum\limits_{i=0}^nf[x_0,x_1,\dots,x_k]\omega_k(x) nf(x)=i=0nf[x0,x1,,xk]ωk(x)其中 f [ x 0 , x 1 , … , x k ] f[x_0,x_1,\dots,x_k] f[x0,x1,,xk]称为 f f f 关于点 x 0 , x 1 , … , x k x_0,x_1,\dots,x_k x0,x1,,xk的k阶牛顿差商

差商

差商的基本性质

  • n阶差商为n次插值多项式的首项系数
  • 差商值与节点排列顺序无关
  • f [ x 0 , x 1 , … , x n ] = f ( x n ) − ∏ n − 1 f ( x n ) ω n ( x n ) = ∏ n f ( x n ) − ∏ n − 1 f ( x n ) ω n ( x n ) = ∑ i = 0 n f ( x i ) ω n + 1 ′ ( x i ) \begin{split} f[x_0,x_1,\dots,x_n]&=\frac{f(x_n)-\prod_{n-1}f(x_n)}{\omega_n(x_n)}\\ &=\frac{\prod_nf(x_n)-\prod_{n-1}f(x_n)}{\omega_n(x_n)}\\ &=\sum\limits_{i=0}^n\frac{f(x_i)}{\omega'_{n+1}(x_i)}\\ \end{split} f[x0,x1,,xn]=ωn(xn)f(xn)n1f(xn)=ωn(xn)nf(xn)n1f(xn)=i=0nωn+1(xi)f(xi)
  • f [ x 0 , x 1 , … , x n ] = f [ x 0 , … , x n − 1 ] − f [ x 1 , … , x n ] x 0 − x n f[x_0,x_1,\dots,x_n]=\frac{f[x_0,\dots,x_{n-1}]-f[x_1,\dots,x_n]}{x_0-x_n} f[x0,x1,,xn]=x0xnf[x0,,xn1]f[x1,,xn]

证明思路:

第二条性质:
前两个等号容易得到;第三个等号:只需注意到

  • n阶差商是n次Newton插值的首项系数
  • 等式右端是Lagrange插值多项式的首项系数
  • Newton插值、Lagrange插值是同一插值多项式的不同表达
  • 多项式插值的唯一性(由Vandermonde行列式的性质易证)

第三条性质:归纳法可证

差商估计

f [ x 0 , x 1 , … , x n ] = f ( m ) ( ξ ) m ! f[x_0,x_1,\dots,x_n]=\frac{f^{(m)}(\xi)}{m!} f[x0,x1,,xn]=m!f(m)(ξ)其中 ξ ∈ ( min ⁡ { x i } , max ⁡ { x i } ) \xi\in(\min\{x_i\},\max\{x_i\}) ξ(min{xi},max{xi})

证明思路:构造辅助函数 f ( x ) − ∏ n f ( x ) f(x)-\prod_nf(x) f(x)nf(x),使用 n n n次Rolle中值定理

差商的Leibniz公式

f ( x ) = ϕ ( x ) ψ ( x ) f(x)=\phi(x)\psi(x) f(x)=ϕ(x)ψ(x),则
f [ x 0 , x 1 , … , x n ] = ∑ i = 0 n ϕ ( x 0 , … , x i ) ψ ( x i , … , x n ) f[x_0,x_1,\dots,x_n]=\sum\limits_{i=0}^n\phi(x_0,\dots,x_i)\psi(x_i,\dots,x_n) f[x0,x1,,xn]=i=0nϕ(x0,,xi)ψ(xi,,xn)

证明思路:对 f , ϕ , ψ f,\phi,\psi f,ϕ,ψ 分别进行Newton插值即可

余项估计

R n ( x ) = f ( x ) − ∏ n f ( x ) = f [ x 0 , x 1 , … , x n , x ] ∏ i = 0 n ( x − x i ) = f [ x 0 , x 1 , … , x n , x ] ω n + 1 ( x ) \begin{split} R_n(x)&=f(x)-\prod_nf(x)\\ &=f[x_0,x_1,\dots,x_n,x]\prod\limits_{i=0}^n(x-x_i)\\ &=f[x_0,x_1,\dots,x_n,x]\omega_{n+1}(x)\\ \end{split} Rn(x)=f(x)nf(x)=f[x0,x1,,xn,x]i=0n(xxi)=f[x0,x1,,xn,x]ωn+1(x)

参考书籍:《数值分析》李庆扬 王能超 易大义 编


http://www.kler.cn/a/272245.html

相关文章:

  • StarRocks 3.4 发布--AI 场景新支点,Lakehouse 能力再升级
  • AI Agent:AutoGPT的使用方法
  • (undone) 并行计算学习 (Day2: 什么是 “伪共享” ?)
  • PyTorch使用教程(13)-一文搞定模型的可视化和训练过程监控
  • 人工智能领域单词:英文解释
  • 2024 年度学习总结
  • C/C++蓝桥杯之报数游戏
  • ASP.NET 服务器控件
  • Docker 安装 Skywalking以及UI界面
  • 数据库MySQL
  • 双向链表的实现
  • 小心串行队列的执行依赖
  • Vue2 引入使用ElementUI详解
  • python --阿里云(智能媒体管理/视频点播)
  • CI/CD实战-gitlab代码仓库 2
  • Git入门学习
  • 最后的挣扎 - Qt For Android on HuaWei Mate 60Pro (v4.0.0)
  • 【AI】Ubuntu系统深度学习框架的神经网络图绘制
  • Etcd 介绍与使用(入门篇)
  • shallowReactive浅层式响应对象
  • wireshark解析https数据包
  • 每周一算法:双向深搜
  • Sqlserver 模糊查询中文及在mybatis xml【非中文不匹配查询】N@P2问题
  • 在Ubuntu系统中使用Systemctl添加启动项的详细指南
  • sqlite 常见命令 表结构
  • go rabbitmq 操作