当前位置: 首页 > article >正文

JVM 相关知识点记录

文章目录

  • 前言
  • 哪些内存需要回收
  • 方法区的垃圾回收
  • 垃圾收集算法
  • 垃圾收集器
  • 年轻代进入老年代条件
  • 内存担保机制
  • FullGC 触发时机
  • GC日志解析
    • 日志参数


前言

JVM包含内容:

  • 类装载子系统(Class Load SubSystem)
  • 运行时数据区(Run-Time Data Areas)
      • 局部变量表
      • 操作数栈
      • 动态链接
      • 方法返回地址
    • 程序计数器
    • 方法区
  • 本地方法接口(Native Method Stack)
  • PC寄存器(Programe Counter Register)
  • 执行引擎(Execution Engine)
    • 字节码解释器
      对字节码采用逐行解释的方式执行
    • JIT(Just In Time)编译器

JIT(Just In Time)编译器

  • 方法调用计数器:统计方法调用次数
    统计方法调用的次数。默认阈值时Client模式下1500次,在Server模式下是10000次。超过这个阈值就会触发JIT编译。这个阈值可以通过-XX:CompileThreshold设定
  • 回边计数器:统计循环体执行的循环次数

jvm内存分配

  • 栈上分配与TLAB/内存分配的两种方法

jdk1.8默认垃圾回收器
JDK1.8中,Parallel Scavenge 被设置为年轻代(Young Generation)的默认垃圾回收器,而 Parallel Old 是用于老年代(Tenured Generation)的垃圾回收器

哪些内存需要回收

所谓“要回收的垃圾”无非就是那些不可能再被任何途径使用的对象。
寻找回收对象的两种方式。

  • 引用计数法
    给对象中添加一个引用计数器,每当一个地方引用这个对象时,计数器值+1;当引用失效时,计数器值-1。任何时刻计数值为0的对象就是不可能再被使用的。
  • 可达性分析法
    通过一系列称为GC Roots的对象作为起始点,从这些节点向下搜索,搜索所走过的路径称为引用链,当一个对象到GC Roots没有任何引用链(即GC Roots到对象不可达)时,则证明此对象是不可用的。

可以作为GCRoots的对象包括下面几种:

  • 虚拟机栈(栈帧中的局部变量区,也叫做局部变量表)中引用的对象。
  • 方法区中的类静态属性引用的对象。
  • 方法区中常量引用的对象。
  • 本地方法栈中JNI(Native方法)引用的对象。

方法区的垃圾回收

方法区的垃圾回收主要回收两部分内容:

  1. 废弃常量。
    以字面量回收为例,如果一个字符串“abc”已经进入常量池,但是当前系统没有任何一个String对象引用了叫做“abc”的字面量,那么,如果发生垃圾回收并且有必要时,“abc”就会被系统移出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。
  2. 无用的类。既然进行垃圾回收,就需要判断哪些是废弃常量,哪些是无用的类,需要满足以下三个条件:
    • 该类的所有实例都已经被回收,即Java堆中不存在该类的任何实例。
    • 加载该类的ClassLoader已经被回收。
    • 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

垃圾收集算法

  • 标记-清除(Mark-Sweep)算法
  • 复制(Copying)算法
  • 标记-整理(Mark-Compact)算法
  • 分代收集算法

垃圾收集器

  • Serial收集器()
    需要STW(Stop The World),停顿时间长。
    简单高效,对于单个CPU环境而言,Serial收集器由于没有线程交互开销,可以获取最高的单线程收集效率。
  • Serial Old收集器
    Serial收集器的老年代版本
  • ParNew收集器
    ParNew收集器其实就是Serial收集器的多线程版本
  • Parallel Scavenge收集器
  • Parallel Old收集器
  • CMS收集器
  • G1收集器

垃圾收集器讲解

垃圾收集器讲解2

年轻代进入老年代条件

  • 躲过15次gc,达到15岁高龄之后进入老年代;
  • 动态年龄判定规则,如果Survivor区域内年龄1+年龄2+年龄3+年- 龄n的对象总和大于Survivor区的50%,此时年龄n以上的对象会进入老年代,不一定要达到15岁
  • 如果一次Young GC后存活对象太多无法放入Survivor区,此时直接计入老年代
  • 大对象直接进入老年代

内存担保机制

  1. 什么是老年代空间担保机制?担保的过程是什么?
    JVM有这么一个参数:-XX:-HandlePromotionFailure(1.8默认设置)
      年轻代每次GC前都,JVM都会计算老年代剩余可用空间,如果这个剩余空间小于年轻代里所有对象大小之和(包括垃圾对象),那么JVM就会看是否设置前面这个参数。如果设置这个参数,且老年代剩余空间是否小于之前每一次MInorGC后进入老年代对象的平均大小。
      如果没设置参数,或者小于平均大小,会先触发一次FullGC,将老年代和年轻代的垃圾对象一起回收掉,如果回收后还是没有空间存放对象,则会发生OOM。

在这里插入图片描述

  1. 老年代空间担保机制是谁给谁担保?
    我理解的是老年代给新生代的S区做担保。
  2. 为什么要有老年代空间担保机制?或者说空间担保机制的目的是什么?
    目的:避免频繁的进行FullGC。
  3. 如果没有老年代空间担保机制会有什么不好?
    如果没有这个担保机制,就会直接执行Full GC,这样对性能的影响频次会增加。

FullGC 触发时机

Full GC(Full Garbage Collection)是指对整个Java堆进行垃圾回收,包括新生代和老年代。触发Full GC的情况有以下几种:

  • 老年代空间不足:当老年代中没有足够的空间来分配一个大对象时,会先尝试进行Minor GC,如果仍然无法获得足够的空间,则会触发Full GC。

  • 调用System.gc()方法:虽然使用System.gc()方法不能保证立即进行垃圾回收,但是这个方法可以提示JVM进行垃圾回收。如果此时需要更多的内存空间,那么就可能会触发Full GC。

  • Perm区空间不足:Perm区是存放类信息和常量池等元数据的区域,如果Perm区没有足够的空间来存放这些信息,就会触发Full GC。

  • CMS GC出现Concurrent Mode Failure:CMS(Concurrent Mark Sweep)是一种以最小化停顿时间为目标的垃圾收集器,在CMS执行过程中,如果应用程序产生了大量更新,导致CMS回收速度跟不上对象生成速度,那么就可能会出现Concurrent Mode Failure,此时会启动Full GC来清理整个堆空间。

  • 分配担保失败:在Minor GC后,如果survivor区无法容纳所有幸存对象,那么就要将部分幸存对象转移到老年代。如果老年代剩余空间不足以容纳这些对象,就需要进行Full GC。

需要注意的是,Full GC通常比Minor GC和CMS GC的停顿时间长,同时对于大型应用程序,Full GC可能会影响性能,因此应该尽量避免Full GC的发生。

GC日志解析

GC日志内容

日志内容解析及GC案例

不同垃圾收集器的不同日志打印示例
G1垃圾收集器日志解析

日志参数

  • -XX:+PrintGC: 输出GC日志。类似:java -verbose:gc
  • -XX:+PrintGCDetails : 输出GC的详细日志
  • -XX:+PrintGCTimestamps : 输出GC的时间戳(以基准时间的形式)
  • -XX:+PrintGCDatestamps : 输出GcC的时间戳(以日期的形式,如2013-05-04T21:53:59.234+0800)
  • -XX:+PrintHeapAtGC: 在进行GC的前后打印出堆的信息
  • -Xloggc:./logs/gc.log: 日志文件的输出路径

-XX:+PrintGC :

这个只会显示总的GC堆的变化,如下:

[GC (Allocation Failure) 80832K->19298K(227840K),0.0084018 secs]
[GC (Metadata GC Threshold) 109499K->21465K(228352K),0.0184066 secs]
[Full GC (Metadata GC Threshold) 21465K->16716K(201728K),0.0619261 secs]

参数解析:

GCFull GCGC的类型,GC只在新生代上进行,Full GC包括永生代,新生代,老年代。
Allocation FailureGC发生的原因。
80832K->19298K:堆在GC前的大小和GC后的大小。
228840k:现在的堆大小。
0.0084018 secs:GC持续的时间。

-XX:+PrintGCDetails

[GC (Allocation Failure) [PSYoungGen:70640K->10116K(141312K)] 80541K->20017K(227328K),0.0172573 secs] [Times:user=0.03 sys=0.00,real=0.02 secs]
[GC (Metadata GC Threshold) [PSYoungGen:98859K->8154K(142336K)] 108760K->21261K(228352K),0.0151573 secs] [Times:user=0.00 sys=0.01,real=0.02 secs]
[Full GC (Metadata GC Threshold)[PSYoungGen:8154K->0K(142336K)]
[ParOldGen:13107K->16809K(62464K)] 21261K->16809K(204800K),[Metaspace:20599K->20599K(1067008K)],0.0639732 secs]
[Times:user=0.14 sys=0.00,real=0.06 secs]

参数解析:

GCFull FC:同样是GC的类型
Allocation FailureGC原因
PSYoungGen:使用了Parallel Scavenge并行垃圾收集器的新生代GC前后大小的变化
ParOldGen:使用了Parallel Old并行垃圾收集器的老年代GC前后大小的变化
Metaspace: 元数据区GC前后大小的变化,JDK1.8中引入了元数据区以替代永久代
xxx secs:指GC花费的时间
Times:
	user:指的是垃圾收集器花费的所有CPU时间
	sys:花费在等待系统调用或系统事件的时间
	real:GC从开始到结束的时间,包括其他进程占用时间片的实际时间。

-XX:+PrintGCTimestamps & -XX:+PrintGCDatestamps

带上日期:

2019-09-24T22:15:24.518+0800: 3.287: [GC (Allocation Failure) [PSYoungGen:136162K->5113K(136192K)] 141425K->17632K(222208K),0.0248249 secs] [Times:user=0.05 sys=0.00,real=0.03 secs]

2019-09-24T22:15:25.559+0800: 4.329: [GC (Metadata GC Threshold) [PSYoungGen:97578K->10068K(274944K)] 110096K->22658K(360960K),0.0094071 secs] [Times: user=0.00 sys=0.00,real=0.01 secs]
2019-09-24T22:15:25.569+0800: 4.338: [Full GC (Metadata GC Threshold) [PSYoungGen:10068K->0K(274944K)]

[ParoldGen:12590K->13564K(56320K)] 22658K->13564K(331264K),[Metaspace:20590K->20590K(1067008K)],0.0494875 secs] [Times: user=0.17 sys=0.02,real=0.05 secs]

总结 :

[GC[Full GC说明了这次垃圾收集的停顿类型,如果有Full则说明GC发生了"Stop The World"

不同的垃圾收集器在日志中的名称:

  • 使用Serial收集器在新生代的名字是Default New Generation,因此显示的是[DefNew
  • 使用ParNew收集器在新生代的名字会变成[ParNew,意思是Parallel New Generation
  • 使用Parallel Scavenge收集器在新生代的名字是[PSYoungGen
  • 使用Parallel Old收集器收集器在老年代显示[ParoldGen
  • 使用G1收集器的话,会显示为garbage-first heap

Allocation Failure:表明本次引起GC的原因是因为在年轻代中没有足够的空间能够存储新的数据了。
Metadata GCThreshold:Metaspace区不够用了
FErgonomics:JVM自适应调整导致的GC
System:调用了System.gc()方法

一般日志格式:

GC日志格式的规律一般都是:GC前内存占用->GC后内存占用(该区域内存总大小)

[PSYoungGen:5986K->696K(8704K) ] 5986K->704K(9216K)

  • 中括号内:GC回收前年轻代大小,回收后大小,(年轻代总大小)
  • 括号外:GC回收前年轻代和老年代大小,回收后大小,(年轻代和老年代总大小)

GC日志中有三个时间:user,sys和real

  • user:进程执行用户态代码(核心之外)所使用的时间。这是执行此进程所使用的实际CPU 时间,其他进程和此进程阻塞的时间并不包括在内。在垃圾收集的情况下,表示GC线程执行所使用的 CPU 总时间。
  • sys:进程在内核态消耗的 CPU 时间,即在内核执行系统调用或等待系统事件所使用的CPU 时间
  • real:程序从开始到结束所用的时钟时间。这个时间包括其他进程使用的时间片和进程阻塞的时间(比如等待 I/O 完成)。对于并行gc,这个数字应该接近(用户时间+系统时间)除以垃圾收集器使用的线程数。

日志分析原文


http://www.kler.cn/a/272622.html

相关文章:

  • 常见的两种虚拟化技术比较:KVM与VMware
  • UI自动化测试:异常截图和page_source
  • 【机器学习实战】kaggle 欺诈检测---使用生成对抗网络(GAN)解决欺诈数据中正负样本极度不平衡问题
  • Kubernetes(k8s)和Docker Compose本质区别
  • PCL 新增自定义点类型【2025最新版】
  • SpringBoot+Vue小区智享物业管理系统(高质量源码,可定制,提供文档,免费部署到本地)
  • Vue动态绑定Class与Style
  • Docker Mysql无root账户创建最高权限用户
  • opencv中的图像均值模糊—blur
  • 华为PixArt-α:高质量、低成本的文生图模型,训练时长只有SD 1.5的10.8%
  • 隐私和安全是首要考虑?Zoho ToDo的任务管理工具适合您
  • Nginx的日志怎么看,在哪看,access.log日志内容详解
  • Webpack 学习笔记
  • 在Linux/Ubuntu/Debian中使用lsof和fuser查看/解除文件占用
  • 数字电子技术实验(七)
  • 卷径计算(卷径检测开关+博途PLC SCL源代码)
  • 电商数据技术前沿:探索未来的无限可能
  • 学习使用postman软件上传文件发起api接口请求
  • 5、【AI技术新纪元:Spring AI解码】Spring AI API介绍
  • React——react 的基本使用
  • 力扣hot100:34. 在排序数组中查找元素的第一个和最后一个位置(二分查找的理解)
  • 心灵治愈交流平台|基于springboot框架+ Mysql+Java+B/S结构的心灵治愈交流平台设计与实现(可运行源码+数据库+设计文档)
  • 【playbook】
  • 鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:EffectComponent)
  • 鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Web)中篇
  • 算法刷题day32