当前位置: 首页 > article >正文

【概率论中的两种重要公式:全概率和贝叶斯】

贝叶斯公式(Bayes’ Theorem)是概率论中的一条重要定理,用于计算条件概率。它描述了在已知某一事件发生的条件下,另一事件发生的概率。贝叶斯公式如下所示:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
其中:

  • P ( A ∣ B ) P(A|B) P(AB):表示在事件B发生的条件下事件A发生的概率,即A的后验概率。
  • P ( B ∣ A ) P(B|A) P(BA):表示在事件A发生的条件下事件B发生的概率,即B的条件概率。
  • P ( A ) P(A) P(A) P ( B ) P(B) P(B):分别表示事件A和事件B的先验概率。
    全概率公式(Law of Total Probability)用于计算一个事件的概率,通过将该事件分解成多个互斥事件的并集,并利用这些互斥事件的概率求和来计算目标事件的概率。全概率公式如下所示:
    P ( B ) = ∑ i P ( B ∣ A i ) ⋅ P ( A i ) P(B) = \sum_{i} P(B|A_i) \cdot P(A_i) P(B)=iP(BAi)P(Ai)
    其中:
  • A i A_i Ai是样本空间的一个划分,表示一系列互斥事件。
  • P ( B ∣ A i ) P(B|A_i) P(BAi)是在给定事件 A i A_i Ai下事件B的条件概率。
  • P ( A i ) P(A_i) P(Ai)是事件 A i A_i Ai的概率。
    主要用法区别
  • 贝叶斯公式主要用于计算已知某一事件发生的条件下另一事件发生的概率,常用于推断问题,如医学诊断、垃圾邮件过滤等。
  • 全概率公式主要用于计算目标事件的概率,通过将目标事件分解成多个互斥事件的并集,并利用这些事件的概率求和来计算目标事件的概率。
    具体例子
  1. 贝叶斯公式示例
    • 问题:假设有一种罕见的疾病,已知该疾病发生率为0.1%。医生发现一名患者呈阳性反应,测试的准确率为99%。求该患者确实患有该疾病的概率。
    • 解答:设事件 A A A表示患者确实患有疾病,事件 B B B表示测试呈阳性。已知 P ( A ) = 0.001 P(A)=0.001 P(A)=0.001 P ( B ∣ A ) = 0.99 P(B|A)=0.99 P(BA)=0.99,需要求 P ( A ∣ B ) P(A|B) P(AB)
      根据贝叶斯公式:
      P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) = 0.99 ⋅ 0.001 P ( B ) P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} = \frac{0.99 \cdot 0.001}{P(B)} P(AB)=P(B)P(BA)P(A)=P(B)0.990.001
      根据全概率公式:
      P ( B ) = P ( B ∣ A ) ⋅ P ( A ) + P ( B ∣ ¬ A ) ⋅ P ( ¬ A ) = 0.99 ⋅ 0.001 + P ( B ∣ ¬ A ) ⋅ ( 1 − 0.001 ) P(B) = P(B|A) \cdot P(A) + P(B|\neg A) \cdot P(\neg A) = 0.99 \cdot 0.001 + P(B|\neg A) \cdot (1-0.001) P(B)=P(BA)P(A)+P(B∣¬A)P(¬A)=0.990.001+P(B∣¬A)(10.001)
      其中, P ( B ∣ ¬ A ) P(B|\neg A) P(B∣¬A)表示患者没有疾病但测试呈阳性的概率,通常称为误报率,这里假设为0.01。
      P ( B ) = 0.99 ⋅ 0.001 + 0.01 ⋅ ( 1 − 0.001 ) P(B) = 0.99 \cdot 0.001 + 0.01 \cdot (1-0.001) P(B)=0.990.001+0.01(10.001)
      最终求得 P ( A ∣ B ) P(A|B) P(AB)
  2. 全概率公式示例
    • 问题:假设有两个工厂生产某种产品,工厂A的产品有20%的缺陷率,工厂B的产品有10%的缺陷率。已知购买该产品的人中,80%来自工厂A,20%来自工厂B。求购买的产品中有缺陷的概率。
    • 解答:设事件 D D D表示产品有缺陷,事件 F A F_A FA表示产品来自工厂A,事件 F B F_B FB表示产品来自工厂B。需要求 P ( D ) P(D) P(D)
      根据全概率公式:
      P ( D ) = P ( D ∣ F A ) ⋅ P ( F A ) + P ( D ∣ F B ) ⋅ P ( F B ) P(D) = P(D|F_A) \cdot P(F_A) + P(D|F_B) \cdot P(F_B) P(D)=P(DFA)P(FA)+P(DFB)P(FB)
      P ( D ) = 0.2 ⋅ 0.8 + 0.1 ⋅ 0.2 P(D) = 0.2 \cdot 0.8 + 0.1 \cdot 0.2 P(D)=0.20.8+0.10.2
      最终求得购买的产品中有缺陷的概率。

http://www.kler.cn/a/273158.html

相关文章:

  • Axure大屏可视化模板:赋能各行各业的数据展示与管理
  • ICPC区域赛成都站【赛后回顾+总结】
  • CSS常见适配布局方式
  • 语言模型的采样方法
  • Qt报错QOCI driver not loaded且QOCI available的解决方法
  • Qt6 CMake 中引入 Qt Linguist 翻译功能
  • js判断对象是否有某个属性
  • Android SystemServer进程解析
  • MapReduce面试重点
  • 详解Python中的缩进和选择
  • 搜索二叉树迭代和递归的两种*简单*实现方式
  • python--剑指offer--题目目录-学习计划
  • Spring Bean的生命周期流程
  • ElasticSearch架构设计
  • 中国移动端第三方输入法市场专题2024
  • 掘根宝典之C++迭代器简介
  • C/C++中{}的用法总结(全)
  • 后端工程师快速使用vue和Element
  • 从历年315曝光案例,看APP隐私合规安全
  • FPGA——DDR3的IP核
  • Leetcode 3080. Mark Elements on Array by Performing Queries
  • 【SpringCloud】使用Seata实现分布式事务
  • 有关于Docker(容器),Image(镜像)部署等名词含义
  • 恒创科技:什么是BGP线路服务器?BGP机房的优点是什么?
  • vue中判断是否使用自定义插槽
  • 视频私有云,HDMI/AV多硬件设备终端接入,SFU/MCU视频会议交互方案。