当前位置: 首页 > article >正文

【数据结构和算法初阶(C语言)】二叉树的顺序结构--堆的实现/堆排序/topk问题详解---二叉树学习日记②

目录

​编辑

1.二叉树的顺序结构及实现

1.1 二叉树的顺序结构

2 堆的概念及结构

3 堆的实现

3.1堆的代码定义

3.2堆插入数据

3.3打印堆数据

3.4堆的数据的删除

3.5获取根部数据

3.6判断堆是否为空

3.7 堆的销毁 

4.建堆以及堆排序 

4.1 升序建大堆,降序建小堆

4.2堆排序

4.3 topk问题

5.结语


1.二叉树的顺序结构及实现

1.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

左孩子的下标 = 父亲下标*2+1

右孩子下标 = 父亲节点下标*2+2

父亲节点下标 = (子节点下标-1)/2 

2 堆的概念及结构

堆是非线性结构,是完全二叉树

如果有一个值的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足: = 且 >= ) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 堆的性质: 堆中某个节点的值总是不大于或不小于其父节点的值;

堆总是一棵完全二叉树。

通俗来说父节点小于等于子节点的完全二叉树就叫小根堆,或者小堆,根一定是整棵树最小的。

父节点值大于等于子节点的完全二叉树叫做大根堆。或者大堆,但是底层数组不一定降序。但是大堆的根是整棵树的最大值。

3 堆的实现

3.1堆的代码定义

底层是一个顺序表

typedef int HPDataType;

typedef struct Heap
{
	//底层是一个顺序表,但是数据不是随便存储,逻辑结构是二叉树
	HPDataType * a;
	int size;
	int capacity;
}HP;

堆的初始化:

void HeapInit(HP* php)
{
	assert(php);
	HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * 2);//先为i堆空间申请两个节点
	if (tmp == NULL)
	{
		perror("malloc");
		exit(-1);
	}
	
	php->a = tmp;
	php->capacity = 2;
	
	php->size = 0;
}

 

3.2堆插入数据

实现关键

实现原理图:向上调整:

(以大堆的实现方式举例)

首先我们从有限个数据的层面来实现一下堆的实现,后面堆排序再来看对于一堆数据怎么建堆。

对于一组少量数据比如一个数组:

首先将数据一个一个插入到堆里面,由于数据有限可以使用这种数据插入的方式建立堆这种数据结构;

void HeapPush(HP* php, HPDataType x)
{
	//尾插

	assert(php);
	//判断空间够不够
	if (php->capacity == php->size)
	{
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(php->a) + sizeof(HPDataType) * 2);
		if (tmp == NULL)
		{
			perror("realloc");
			exit(-1);
		}
		php->a = tmp;
		php->capacity += 2;
	}
	php->a[php->size] = x;
	php->size++;
	//调整数据,变成堆
	AdjustUp(php->a, php->size-1);
	
}

 然后把这组数据调整成一个堆:

 

void Swap(HPDataType* child, HPDataType* parent)
{
	HPDataType tmp = 0;
	tmp = *child;
	*child = *parent;
	*parent = tmp;
}
void AdjustUp(HPDataType* a,int child)//向上调整
{
	//最坏调整到根
	int parent = (child - 1) / 2;
	while (child>0)//注意这个判断条件
	{
		if (a[child] > a[parent])
		{
			//交换
			Swap(&a[child], &a[parent]);
			//继续往上深入判断,将父亲的下标给孩子,父亲的父亲的下标给父亲
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;//跳出循环
		}
	}

}

3.3打印堆数据

为了看一下我们插入的效果我们来试一下插入一段数据 

 

void HeapPrint(HP* php)
{
	assert(php); 
	for (int i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
		
	}
}

 

 就建成了一个大堆。

3.4堆的数据的删除

堆这个数据结构有意义的一个点就是,大堆的根一定是这组数据中最大的值,小堆的根一定是这组数据中最小的值。所以如果我们能拿到这个根的数据,再删除就可以找到这堆数据中次小的数据了。那么删除根数据是这个结构比较有意义的。

想一个问题:根的删除能不能简单的数据覆盖?只是将后续的数据移动向前

答案是不能的,可以数据这样移动后续数据根本就不能成堆了。那么这里使用的方法是向下调整法

前提是左右子树是堆:

这里我们以小堆举例示范:

先删除

void HeapPop(HP* php) 
{
	assert(php);
	//不可挪动覆盖。可能就不是堆了
	//先交换根和最后一个值,再删除,左右子树依旧是小堆
	//向下调整的算法,左右子树都是小堆或者大堆。
	 
	assert(php->size > 0);
	Swap(&php->a[0],&php->a[php->size-1]);
	php->size--;//删除了数据
	AdjustDown(php->a,php->size, 0);
}

在调整

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child<n)
	{
		if (child+1<n&&a[child + 1] < a[child])//child+1可能越界访问
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			//继续向下调整
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

}

调整是由于每次都是取两个子节点中的较小的值,所以先假设一个大,如果假设错了,就改变下标 

if (child+1<n&&a[child + 1] < a[child])//child+1可能越界访问
        {
            child++;
        }

对调整循环结束的判定所示孩子下标小于n

3.5获取根部数据

//获取根部数据
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}

3.6判断堆是否为空


//判断堆是否为空函数
bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;

}

3.7 堆的销毁 

void HeapDestory(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

那么如果现在我们每次拿到堆的元素在删除在获取,就可以得到一个有序的数据了:

4.建堆以及堆排序 

上面我们已经掌握了堆这个数据结构的一些方法,最后通过插入数据建堆。删除1数据将数据排序。可是如果我有十亿个数据,想找出最大的十个数据,如果用堆得插入10亿次数据吗?那就失去了使用这个数据结构的意义,通常来说我们只用建立一个大堆模型,这个堆的前十个数据自然就是10亿个数据中的最大的一个。

4.1 升序建大堆,降序建小堆

4.2堆排序

4.3 topk问题

 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。 对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,

基本思路如下:

1. 用数据集合中前K个元素来建堆 前k个最大的元素,则建小堆 前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

(明天补)

5.结语

以上就是本期的所有内容,知识含量蛮多,大家可以配合解释和原码运行理解。创作不易,大家如果觉得还可以的话,欢迎大家三连,有问题的地方欢迎大家指正,一起交流学习,一起成长,我是Nicn,正在c++方向前行的奋斗者,数据结构内容持续更新中,感谢大家的关注与喜欢。

 


http://www.kler.cn/a/273344.html

相关文章:

  • 深度解析 Python 网络框架:Django、Tornado、Flask 和 Twisted
  • Objective-C语言的语法
  • unity 播放 序列帧图片 动画
  • Flink概念知识讲解之:Restart重启策略配置
  • GEE:为什么在机器学习分类或回归时,提取特征变量后的样本点下载到本地时,数据为空且缺少坐标?
  • AR/MR产品设计(二):如何用一双手完成与虚拟对象的自然交互
  • 【QCM4490】开机慢
  • C++_day6
  • Qt5.14.2 深入理解Qt多线程编程,掌握线程池架构实现高效并发
  • 【低照度图像增强系列(3)】EnlightenGAN算法详解与代码实现
  • 房产销售平台|基于Spring cloud+ Mysql+Java+ Tomcat的房产销售平台设计与实现(可运行源码+数据库+设计文档)
  • ONLYOFFICE文档8.0全新发布:私有部署、卓越安全的协同办公解决方案
  • 数字创新的引擎:探索Web3的前沿科技和商业模式
  • Hystrix的原理及应用:构建微服务容错体系的利器(一)
  • GitLab/Github从头开始配置秘钥
  • Java 学习和实践笔记(40):String类详解
  • 外包干了3个月,技术明显进步。。。。。
  • 学习Java十一天总结
  • 聚类分析 | Matlab实现基于PCA+DBO+K-means的数据聚类可视化
  • 钉钉小程序 - - - - - 如何通过一个链接打开小程序内的指定页面
  • 【OpenCV C++】找到图像中最亮的区域中心,求该区域ROI的平均亮度
  • 电话机器人语音识别用哪家更好精准度更高。
  • HUAWEI Pocket 2外屏实时查看App动态,小小窗口大便捷
  • Spring项目问题:登录中用户名或密码为空问题