深度学习实战模拟——softmax回归(图像识别并分类)
目录
1、数据集:
2、完整代码
1、数据集:
1.1 Fashion-MNIST是一个服装分类数据集,由10个类别的图像组成,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。
1.2 Fashion‐MNIST由10个类别的图像组成,每个类别由训练数据集(train dataset)中的6000张图像和测试数据 集(test dataset)中的1000张图像组成。因此,训练集和测试集分别包含60000和10000张图像。测试数据集 不会用于训练,只用于评估模型性能。
以下函数用于在数字标签索引及其文本名称之间进行转换。
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
以下函数用于在数字标签索引及其文本名称之间进行转换。
def get_fashion_mnist_labels(labels): #@save
"""返回Fashion-MNIST数据集的文本标签"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
2、完整代码
import torch
import torchvision
import pylab
from torch.utils import data
from torchvision import transforms
import matplotlib.pyplot as plt
from d2l import torch as d2l
import time
batch_size = 256
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
num_epochs = 5
class Accumulator:
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def accuracy(y_hat, y): #@save
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def cross_entropy(y_hat, y):
return -torch.log(y_hat[range(len(y_hat)), y])
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp/partition
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
def get_dataloader_workers():
"""使用一个进程来读取的数据"""
return 1
def get_fashion_mnist_labels(labels):
"""返回Fashion-MNIST数据集的文本标签"""
#共10个类别
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
"""画一系列图片"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
for i, (img, label) in enumerate(zip(imgs, titles)):
xloc, yloc = i//num_cols, i % num_cols
if torch.is_tensor(img):
# 图片张量
axes[xloc, yloc].imshow(img.reshape((28, 28)).numpy())
else:
# PIL图片
axes[xloc, yloc].imshow(img)
# 设置标题并取消横纵坐标上的刻度
axes[xloc, yloc].set_title(label)
plt.xticks([], ())
axes[xloc, yloc].set_axis_off()
pylab.show()
def load_data_fashion_mnist(batch_size, resize=None):
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = transforms.ToTensor()
if resize:
trans.insert(0, transforms.Resize(resize))
mnist_train = torchvision.datasets.FashionMNIST(root='../data', train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root='../data', train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
def evaluate_accuracy(net, data_iter):
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
def updater(batch_size):
lr = 0.1
return d2l.sgd([W, b], lr, batch_size)
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
metric = Accumulator(3)
for X, y in train_iter:
y_hat = net(X)
lo = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
lo.backward()
updater.step()
metric.add(float(lo)*len(y), accuracy(y_hat, y), y.size().numel())
else:
lo.sum().backward()
updater(X.shape[0])
metric.add(float(lo.sum()), accuracy(y_hat, y), y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
class Animator: #@save
"""绘制数据"""
def __init__(self, legend=None):
self.legend = legend
self.X = [[], [], []]
self.Y = [[], [], []]
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
def show(self):
plt.plot(self.X[0], self.Y[0], 'r--')
plt.plot(self.X[1], self.Y[1], 'g--')
plt.plot(self.X[2], self.Y[2], 'b--')
plt.legend(self.legend)
plt.xlabel('epoch')
plt.ylabel('value')
plt.title('Visual')
plt.show()
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型"""
animator = Animator(legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
train_loss, train_acc = train_metrics
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
print(f'epoch: {epoch+1},train_loss:{train_loss:.4f}, train_acc:{train_acc:.4f}, test_acc:{test_acc:.4f}')
animator.show()
def predict_ch3(net, test_iter, n=12):
"""预测标签"""
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
show_images(
X[0:n].reshape((n, 28, 28)), 2, int(n/2), titles=titles[0:n])
if __name__ == '__main__':
train_iter, test_iter = load_data_fashion_mnist(batch_size)
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
predict_ch3(net, test_iter)
分类效果: