InternVL 多模态模型部署微调实践
写在前面(什么是InternVL)
InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现
InternVL 模型总览
对于InternVL这个模型来说,它vision模块就是一个微调过的ViT,llm模块是一个InternLM的模型。对于视觉模块来说,它的特殊之处在Dynamic High Resolution。
Dynamic High Resolution
InternVL独特的预处理模块:动态高分辨率,是为了让ViT模型能够尽可能获取到更细节的图像信息,提高视觉特征的表达能力。对于输入的图片,首先resize成448的倍数,然后按照预定义的尺寸比例从图片上crop对应的区域。细节如图所示。
cd /root
mkdir -p model
# cp 模型
cp -r /root/share/new_models/OpenGVLab/InternVL2-2B /root/model/
Pixel Shuffle
Pixel Shuffle在超分任务中是一个常见的操作,PyTorch中有官方实现,即nn.PixelShuffle(upscale_factor) 该类的作用就是将一个tensor中的元素值进行重排列,假设tensor维度为[B, C, H, W], PixelShuffle操作不仅可以改变tensor的通道数,也会改变特征图的大小。
InternVL 部署微调实践
我们选定的任务是让InternVL-2B生成文生图提示词,这个任务需要VLM对图片有格式化的描述并输出。
让我们来一起完成一个用VLM模型进行冷笑话生成,让你的模型说出很逗的冷笑话吧。在这里,我们微调InterenVL使用xtuner。部署InternVL使用lmdeploy。
准备InternVL模型
我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。
准备环境
这里我们来手动配置下xtuner。
- 配置虚拟环境
conda create --name xtuner python=3.10 -y
# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner
# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0
- 安装xtuner
# 创建一个目录,用来存放源代码 mkdir -p /root/InternLM/code cd /root/InternLM/code git clone -b v0.1.23 https://github.com/InternLM/XTuner
进入XTuner目录
cd /root/InternLM/code/XTuner
pip install -e '.[deepspeed]'
pip install lmdeploy==0.5.3
- 安装验证
xtuner version ##命令 xtuner help
如果验证版本时为0.1.21或低于0.1.23版本,使用下面的命令进行更新
pip install --upgrade xtuner
确认一下你的版本号和我们一致哦~
准备微调数据集
我们这里使用huggingface上的zhongshsh/CLoT-Oogiri-GO据集,特别鸣谢~。
@misc{zhong2023clot,
title={Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation},
author={Zhong, Shanshan and Huang, Zhongzhan and Gao, Shanghua and Wen, Weushao and Lin, Liang and Zitnik, Marinka and Zhou, Pan},
journal={arXiv preprint arXiv:2312.02439},
year={2023}
}
数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,我们一起从share里挪出数据集。
## 首先让我们安装一下需要的包
pip install datasets matplotlib Pillow timm
## 让我们把数据集挪出来
cp -r /root/share/new_models/datasets/CLoT_cn_2000 /root/InternLM/datasets/
让我们打开数据集的一张图看看,我们选择jsonl里的第一条数据对应的图片。首先我们先把这张图片挪动到InternLM文件夹下面。
cp InternLM/datasets/CLoT_cn_2000/ex_images/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg InternLM/
哈哈,是两只猫在掐架。那我给到的冷笑话回复是什么呢?
InternVL 推理部署攻略
我们用LMDeploy来推理这张图片~看看它能不能成功解释出梗图呢?
使用pipeline进行推理
touch /root/InternLM/code/test_lmdeploy.py
cd /root/InternLM/code/
之后我们使用lmdeploy自带的pipeline工具进行开箱即用的推理流程,首先我们新建一个文件。
然后把以下代码拷贝进test_lmdeploy.py中。
from lmdeploy import pipeline
from lmdeploy.vl import load_image
pipe = pipeline('/root/model/InternVL2-2B')
image = load_image('/root/InternLM/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)
运行执行推理结果。
python3 test_lmdeploy.py
推理后
推理出来有什么文字是纯随机的,并不一定和展示结果完全一致哦~
推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。
InternVL 微调攻略
准备数据集
数据集格式为:
# 为了高效训练,请确保数据格式为:
{
"id": "000000033471",
"image": ["coco/train2017/000000033471.jpg"], # 如果是纯文本,则该字段为 None 或者不存在
"conversations": [
{
"from": "human",
"value": "<image>\nWhat are the colors of the bus in the image?"
},
{
"from": "gpt",
"value": "The bus in the image is white and red."
}
]
}
这里我们也为大家准备好了可以直接进行微调的数据集。数据集就是咱们刚才复制进InternLM/datasets的数据。
配置微调参数
让我们一起修改XTuner下 InternVL的config,文件在: /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py
- 需要修改的部分
最基础修改一下模型地址和数据地址即可。
开始训练
这里使用之前搞好的configs进行训练。咱们要调整一下batch size,并且使用qlora。要不半卡不够用的 QAQ。
cd XTuner
NPROC_PER_NODE=1 xtuner train /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py --work-dir /root/InternLM/work_dir/internvl_ft_run_8_filter --deepspeed deepspeed_zero1
---------------------
合并权重&&模型转换
用官方脚本进行权重合并
如果这里你执行的epoch不是6,是小一些的数字。你可能会发现internvl_ft_run_8_filter下没有iter_3000.pth, 那你需要把iter_3000.pth切换成你internvl_ft_run_8_filter目录下的pth即可。
cd XTuner
# transfer weights
python3 xtuner/configs/internvl/v1_5/convert_to_official.py xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py /root/InternLM/work_dir/internvl_ft_run_8_filter/iter_3000.pth /root/InternLM/InternVL2-2B/
最后我们的模型在:/root/InternLM/convert_model/,文件格式:
.
|-- added_tokens.json
|-- config.json
|-- configuration_intern_vit.py
|-- configuration_internlm2.py
|-- configuration_internvl_chat.py
|-- conversation.py
|-- generation_config.json
|-- model.safetensors
|-- modeling_intern_vit.py
|-- modeling_internlm2.py
|-- modeling_internvl_chat.py
|-- special_tokens_map.json
|-- tokenization_internlm2.py
|-- tokenizer.model
`-- tokenizer_config.json
微调后效果对比
现在我们微调好啦,让我们再来试试这张图片吧!
我们把下面的代码替换进test_lmdeploy.py中,然后跑一下效果。
from lmdeploy import pipeline
from lmdeploy.vl import load_image
pipe = pipeline('/root/InternLM/InternVL2-2B')
image = load_image('/root/InternLM/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)
cd /root/InternLM/code
python3 test_lmdeploy.py
效果还不错吧~哈哈哈。