当前位置: 首页 > article >正文

深度学习_数据读取到model模型存储

概要

应用场景:用户流失
本文将介绍模型调用预测的步骤,这里深度学习模型使用的是自定义的deepfm,并用机器学习lgb做比较

代码

导包

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
from collections import defaultdict  
from scipy import stats
from scipy import signal
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score
from scipy.spatial.distance import cosine

import lightgbm as lgb

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler
from tensorflow.keras.layers import *
import tensorflow.keras.backend as K
import tensorflow as tf
from tensorflow.keras.models import Model

import os,gc,re,warnings,sys,math
warnings.filterwarnings("ignore")

pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)

读取数据

data = pd.read_csv('df_03m.csv')

区分稀疏及类别变量

sparse_cols = ['shop_id','sex']
dense_cols  = [c for c in data.columns if c not in sparse_cols + ['customer_id', 'flag', 'duartion_is_lm']]

dense特征处理

def process_dense_feats(data, cols):
    d = data.copy()
    for f in cols:
        d[f] = d[f].fillna(0)
        ss=StandardScaler()
        d[f] = ss.fit_transform(d[[f]])
    return d

data = process_dense_feats(data, dense_cols)

sparse稀疏特征处理

def process_sparse_feats(data, cols):
    d = data.copy()
    for f in cols:
        d[f] = d[f].fillna('-1').astype(str)
        label_encoder = LabelEncoder()
        d[f] = label_encoder.fit_transform(d[f])
    return d

data = process_sparse_feats(data, sparse_cols)

切分训练及测试集

X_train, X_test, _, _ = train_test_split(data, data, test_size=0.3, random_state=2024)

y_train = X_train['flag']
y_test = X_test['flag']

X_train1 = X_train.drop(['customer_id', 'flag', 'duartion_is_lm'], axis = 1)
X_test1 = X_test.drop(['customer_id', 'flag', 'duartion_is_lm'], axis = 1)

模型定义

def deepfm_model(sparse_columns, dense_columns, train, test):
    
    ####### sparse features ##########
    sparse_input = []
    lr_embedding = []
    fm_embedding = []
    for col in sparse_columns:
        ## lr_embedding
        _input = Input(shape=(1,))
        sparse_input.append(_input)
        
        nums = pd.concat((train[col], test[col])).nunique() + 1
        embed = Flatten()(Embedding(nums, 1, embeddings_regularizer=tf.keras.regularizers.l2(0.5))(_input))
        lr_embedding.append(embed)
        
        ## fm_embedding
        embed = Embedding(nums, 10, input_length=1, embeddings_regularizer=tf.keras.regularizers.l2(0.5))(_input)
        reshape = Reshape((10,))(embed)
        fm_embedding.append(reshape)
    
    ####### fm layer ##########
    fm_square = Lambda(lambda x: K.square(x))(Add()(fm_embedding)) # 
    square_fm = Add()([Lambda(lambda x:K.square(x))(embed)
                     for embed in fm_embedding])
    snd_order_sparse_layer = subtract([fm_square, square_fm])
    snd_order_sparse_layer  = Lambda(lambda x: x * 0.5)(snd_order_sparse_layer)
    
    ####### dense features ##########
    dense_input = []
    for col in dense_columns:
        _input = Input(shape=(1,))
        dense_input.append(_input)
    concat_dense_input = concatenate(dense_input)
    fst_order_dense_layer = Dense(4, activation='relu')(concat_dense_input)
    
#     #######  NFM  ##########
#     inner_product = []
#     for i in range(field_cnt):
#         for j in range(i + 1, field_cnt):
#             tmp = dot([fm_embedding[i], fm_embedding[j]], axes=1)
#             # tmp = multiply([fm_embedding[i], fm_embedding[j]])
#             inner_product.append(tmp)
#     add_inner_product = add(inner_product)
    
    
#     #######  PNN  ##########
#     for i in range(field_cnt):
#         for j in range(i+1,field_cnt):
#             tmp = dot([lr_embedding[i],lr_embedding[j]],axes=1)
#             product_list.append(temp)
#     inp = concatenate(lr_embedding+product_list)
    
    ####### linear concat ##########
    fst_order_sparse_layer = concatenate(lr_embedding)
    linear_part = concatenate([fst_order_dense_layer, fst_order_sparse_layer])
    
#     #######  DCN  ##########
#     linear_part = concatenate([fst_order_dense_layer, fst_order_sparse_layer])
#     x0 = linear_part
#     xl = x0
#     for i in range(3):
#         embed_dim = xl.shape[-1]
#         w = tf.Variable(tf.random.truncated_normal(shape=(embed_dim,), stddev=0.01))
#         b = tf.Variable(tf.zeros(shape=(embed_dim,)))
#         x_lw = tf.tensordot(tf.reshape(xl, [-1, 1, embed_dim]), w, axes=1)
#         cross = x0 * x_lw 
#         xl = cross + b + xl
    
    #######dnn layer##########
    concat_fm_embedding = concatenate(fm_embedding, axis=-1) # (None, 10*26)
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(128)(concat_fm_embedding))))
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(64)(fc_layer))))
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(32)(fc_layer))))
    
    ######## output layer ##########
    output_layer = concatenate([linear_part, snd_order_sparse_layer, fc_layer]) # (None, )
    output_layer = Dense(1, activation='sigmoid')(output_layer)
    
    model = Model(inputs=sparse_input+dense_input, outputs=output_layer)
    
    return model
model = deepfm_model(sparse_cols, dense_cols, X_train1, X_test1)
model.compile(optimizer="adam", 
              loss="binary_crossentropy", 
              metrics=["binary_crossentropy", tf.keras.metrics.AUC(name='auc')])
train_sparse_x = [X_train1[f].values for f in sparse_cols]
train_dense_x = [X_train1[f].values for f in dense_cols]
train_label = [y_train.values]

test_sparse_x = [X_test1[f].values for f in sparse_cols]
test_dense_x = [X_test1[f].values for f in dense_cols]
test_label = [y_test.values]
test_sparse_x

训练模型

from keras.callbacks import *
# 回调函数
file_path = "deepfm_model_data.h5"
earlystopping = EarlyStopping(monitor="val_loss", patience=3)
checkpoint = ModelCheckpoint(
    file_path, save_weights_only=True, verbose=1, save_best_only=True)
callbacks_list = [earlystopping, checkpoint]

hist = model.fit(train_sparse_x+train_dense_x, 
                  train_label,
                  batch_size=4096,
                  epochs=20,
                  validation_data=(test_sparse_x+test_dense_x, test_label),
                  callbacks=callbacks_list,
                  shuffle=False)

模型存储

model.save('deepfm_model.h5')
loaded_model = tf.keras.models.load_model('deepfm_model.h5')
print("np.min(hist.history['val_loss']):", np.min(hist.history['val_loss']))
#np.min(hist.history['val_loss']):0.19
print("np.max(hist.history['val_auc']):", np.max(hist.history['val_auc']))
#np.max(hist.history['val_auc']):0.95

模型预测

deepfm_prob = model.predict(test_sparse_x+test_dense_x, batch_size=4096*4, verbose=1)
deepfm_prob.shape
deepfm_prob
df_submit          = pd.DataFrame()
df_submit          = X_test
df_submit['prob']  = deepfm_prob 
df_submit.head(3)
df_submit.shape
df_submit['y_pre'] = ''
df_submit['y_pre'].loc[(df_submit['prob']>=0.5)] = 1
df_submit['y_pre'].loc[(df_submit['prob']<0.5)]  = 0
df_submit.head(3)
df_submit = df_submit.reset_index()
df_submit.head(1)
df_submit = df_submit.drop('index', axis = 1)
df_submit.head(1)
df_submit.groupby(['flag', 'y_pre'])['customer_id'].count()

根据上述结果打印召回及精准

precision = 
recall  = 

查看lgb结果做比较

from lightgbm import LGBMClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import f1_score, confusion_matrix, recall_score, precision_score



params = {'n_estimators': 1500, 
            'learning_rate': 0.1,
            'max_depth': 15,
            'metric': 'auc',
            'verbose': -1, 
            'seed: 2023,
            'n_jobs':-1

model=LGBMClarsifier(**params) 
model.fit(X_train, y_train,
            eval_set=[(X_train1, y_train), (X_test1, y_test)], 
            eval_metric = 'auc', 
            verbose=50,
            early_stopping_rounds = 100)
y_pred = model.predict(X_test1, num_iteration = model.best_iteration_)


          
          

y_pred = model.predict(X_test1)
y_pred_proba = model.predict_proba(X_test1)
lgb_acc = model.score(X_test1, y_test) * 100
lgb_recall = recall_score(y_test, y_pred) * 100
lgb_precision = precision_score(y_test, y_pred) * 100 I 
lgb_f1 = f1_score(y_test, y_pred, pos_label=1) * 100
print("1gb 准确率:{:.2f}%".format(lgb_acc))
print("lgb 召回率:{:.2f}%".fornat(lgb_recall))
print("lgb 精准率:{:.2f}%".format(lgb_precision))
print("lgb F1分数:{:.2f}%".format(lgb_f1))


#from sklearn.metrics import classification_report
#printf(classification_report(y_test, y_pred))

# 混淆矩阵
plt.title("混淆矩阵", fontsize=21)
data_confusion_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(data_confusion_matrix, annot=True, cmap='Blues', fmt='d', cbar='False', annot_kws={'size': 28})
plt.xlabel('Predicted label') 
plt.ylabel('True label')


from sklearn.metrics import roc_curve, auc
probs = model.predict_proba(X_test1)
preds = probs[:, 1]
fpr, tpr, threshold = roc_curve(y_test, preds)
# 绘制ROC曲线
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive(TPR)')
plt.xlabel('False Positive(FPR)')
plt.title('ROC')
plt.legend(loc='lower right')
plt.show()

参考资料:自己琢磨将资料整合


http://www.kler.cn/news/285321.html

相关文章:

  • 华为云征文|初识Flexus云服务X实例和参数配置,finalShell远程连接,安装MySQL并配置和远程访问
  • 2024-如何在低版本Mac OS安装合适的xcode-详细的技术篇
  • Spring Cloud全解析:网关之GateWay过滤器
  • QT:详解信号和槽
  • 相机坐标系转换世界坐标系,zedimudepth
  • 【C++ 第十八章】C++11 新增语法(4)
  • BMC lighttpd kvm数据分析(websocket)
  • 【Qt笔记】QCommandLinkButton控件详解
  • Unity编辑器扩展之Scene视图扩展
  • Windows Edge浏览器对Web Authentication API的支持分析与实践应用
  • 音频处理新纪元:深入探索PyTorch的torchaudio
  • vue新建按钮弹出选框
  • 【第0004页 · 递归】生成括号对
  • 缓存Mybatis一级缓存与二级缓存
  • 【Java设计模式】数据总线模式:高效统一组件通信
  • 【鬼灭之刃学英语 立志篇】2、义勇对炭治郎的怒斥
  • 4.1 版本管理器——2PL与MVCC
  • 第 20 章 DOM 进阶
  • 应用层协议(下)Https加密Http的秘密(含逻辑图解 简单易学 通俗易懂!)
  • DataSet和DataTable的关系
  • Python爬虫所需的技术及其原理(简单易懂)
  • 策略模式+模版方法模式+简单工厂模式混用优化代码复杂分支问题
  • 【软件测试】bug以及测试用例的设计方法
  • Taro 微信小程序 分页上拉加载
  • C语言程序设计(初识C语言后部分)
  • Java—可变参数、不可变集合
  • 单链表应用
  • 在Jtti服务器上怎么安装和配置Docker?
  • Pandas 绘图的强大之处:后端
  • Vue面试常见知识总结2——spa、vue按需加载、mvc与mvvm、vue的生命周期、Vue2与Vue3区别