当前位置: 首页 > article >正文

GEE数据集:城市热岛强度 (UHII)

 简介

城市热岛强度 (UHII)

数据集说明

城市热岛效应(UHI)的特点是城市地区局部变暖,是城市化对气候造成的一个重要后果。 传统的估算 UHI 强度(UHII)的方法受到一些限制,例如只关注晴空表面 UHII,而忽略了全天空表面和冠层(气温)UHII。 这些方法往往忽略了人为干扰,导致估算结果的不确定性。 为了克服这些挑战,本研究引入了一种新的动态等面积(DEA)方法,旨在通过动态循环过程减少干扰因素的影响。 通过应用 DEA 方法并整合网格气温数据,建立了一个全面的全球尺度 UHII 数据集,涵盖 10,000 多个城市,时间跨度超过 20 年,具有月度时间分辨率。 该数据集提供了多方面的 UHII 估计值,包括晴空表面、全天空表面和冠层 UHII,为分析城市环境中的 UHI 趋势提供了坚实的基础。

空间信息

数据集显示,超过 80% 的研究城市的超高层大气吸入系数大于零,地表超高层大气吸入系数的全球年平均值约为 1.0°C(白天)和 0.8°C(夜间),冠层超高层大气吸入系数约为 0.5°C。 此外,60%以上的城市观测到了超高间接辐射的年际上升趋势,地表超高间接辐射的全球平均趋势超过每十年 0.1°C(白天)和 0.06°C(夜间),冠层超高间接辐射的全球平均趋势略高于每十年 0.03°C。 此外,还发现超高强辐射指数的大小和趋势之间存在正相关,表明超高强辐射指数较强的城市,超高强辐射指数的增长速度往往较快。 由于数据类型(地表温度或气温)、数据采集时间(Terra 或 Aqua)、天气条件(晴空或全天空)和处理方法的不同,该数据集进一步突出了 UHII 估计值的差异。 这一全面的数据集和相应的分析为未来的城市气候研究提供了宝贵的见解,可在 https://doi.org/10.6084/m9.figshare.24821538 上公开获取。 全球城市热岛数据集采用多种方法,包括空气温度和地表温度的估计值。 从 2003 年到 2020 年每月提供一次(来自 MODIS Terra 卫星的数据集从 2001 年开始提供)。

变量

IndicatorData SourcePeriodDescription
Surface UHI intensity estimated by the clear-sky LST dataIMod1 (MOD11A1)2001-2021Clear-sky surface UHI from the MODIS Terra daily LST (A1) and 8-day LST (A2) products; both corresponding to an equatorial overpass time of 10:30 am local time during daytime and 10:30 pm at night
IMod2 (MOD11A2)
IMyd1 (MYD11A1)2003-2021Clear-sky surface UHI from the MODIS Aqua daily LST (A1) and 8-day LST (A2) products; both corresponding to an equatorial overpass time of 1:30 pm local time during daytime and 1:30 am at night
IMyd2 (MYD11A2)
Surface UHI intensity estimated by the seamless clear-sky LST dataISMod2 (Seamless MOD11A2)2001-2020Clear-sky surface UHI based on the seamless LST product DOI
ISMyd1 (Seamless MYD11A1)2003-2020Clear-sky surface UHI based on a second seamless LST product DOI
Surface UHI intensity estimated by the seamless all-sky LST dataIAMod2 (All-sky MOD11A2)2001-2020All-sky surface UHI based on the seamless all-sky LST product DOI
Canopy UHI intensity estimated by the surface air temperature dataISAT (Surface air temperature)2001-2020Air temperature or canopy UHI based on the global surface air temperature product DOI

代码

var AMOD2 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/AMOD2"),
    MOD1 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/MOD1"),
    MOD2 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/MOD2"),
    MYD1 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/MYD1"),
    MYD2 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/MYD2"),
    SAT = ee.ImageCollection("projects/sat-io/open-datasets/UHII/SAT"),
    SMOD2 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/SMOD2"),
    SMYD1 = ee.ImageCollection("projects/sat-io/open-datasets/UHII/SMYD1");
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/38/shades-of-grey", "Greyscale");


// Function to calculate and visualize the average UHII from an ImageCollection
function visualizeUHII(collection, title) {
  var uhi = collection.first().mask(collection.first().gt(0));

  Map.addLayer(uhi, {
    min: 1,
    max: 25,
    palette: ['#000004', '#1f0c48', '#550f6d', '#88226a', '#b63655', '#de4968', '#f87d46', '#fdca26', '#f0f921']
  }, title);
}


// Visualize UHII from different collections
visualizeUHII(AMOD2, 'UHII - AMOD2');
visualizeUHII(MOD1, 'UHII - MOD1');
visualizeUHII(MOD2, 'UHII - MOD2');
visualizeUHII(MYD1, 'UHII - MYD1');
visualizeUHII(MYD2, 'UHII - MYD2');
visualizeUHII(SAT, 'UHII - SAT');
visualizeUHII(SMOD2, 'UHII - SMOD2');
visualizeUHII(SMYD1, 'UHII - SMYD1');

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:/weather-climate/URBAN-HEAT-ISLAND-INTENSITY

结果

引用

Yang, Qiquan, Yi Xu, T. C. Chakraborty, Meng Du, Ting Hu, Ling Zhang, Yue Liu et al. "A global urban heat island intensity dataset: Generation,
comparison, and analysis." Remote Sensing of Environment 312 (2024): 114343.

Qiquan Yang.Global Urban Heat Island Intensity Dataset. Figshare. https://doi.org/10.6084/m9.figshare.24821538, 2024.

许可

The datasets are provided under a Attribution 4.0 International (CC BY 4.0) license.

Provided by: Yang et al 2024

Curated in GEE by : Samapriya Roy

Keywords: urban, heat, climate, city

Last updated: 2024-08-29

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs  

机器学习

https://www.mapmost.com/#/?source_inviter=CnVrwIQs 


http://www.kler.cn/a/287299.html

相关文章:

  • 【HarmonyOS】鸿蒙系统在租房项目中的项目实战(一)
  • 【2】猫眼娱乐后端开发面试题整理
  • 商业物联网详细指南:优势与挑战
  • 如何在 Ubuntu 上安装 Jupyter Notebook
  • A037-基于Spring Boot的二手物品交易的设计与实现
  • leetcode-44-通配符匹配
  • 研究生深度学习入门的十天学习计划------第六天
  • 高速传输uwb无线收发芯片,超宽带、低时延无线通信,定位测距技术
  • Seata 部署遇到的各种奇葩问题
  • Spark2.x:通过 JDBC 连接数据库(DataFrame)
  • 如何使用python抓包,附代码
  • Avalonia 播放 VLC 视频(Windows / Linux)
  • 【HTTP、Web常用协议等等】前端八股文面试题
  • C# 编译程序引用C++DLL托管动态链接库实例
  • 用Python实现时间序列模型实战——Day 8: 季节性ARIMA模型 (SARIMA)
  • 分页查询--条件查询
  • STM32 ADC采样详解
  • verilog bug记录-修改信号线频率
  • zookeeper分部式锁
  • ES6----练习题
  • 如何在S7-200 SMART CPU断电后保持高速计数器的当前值
  • Unity学习路线
  • 打造一流的研发型企业--- 金发科技研发驱动力初探
  • MATLAB学习笔记3
  • 使用 OpenSSL 进行 RSA 密钥生成与加解密操作(命令行方式)
  • 用MATLAB 画一个64QAM的星座图