当前位置: 首页 > article >正文

数学基础 -- 线性代数之酉矩阵

酉矩阵(Unitary Matrix)

酉矩阵是线性代数中一种重要的矩阵类型,特别在量子力学和信号处理等领域有广泛的应用。以下是酉矩阵的定义、性质以及使用和计算的例子。

1. 定义

酉矩阵是一个复矩阵 U U U ,满足以下条件:

U † U = U U † = I U^{\dagger} U = U U^{\dagger} = I UU=UU=I

其中:

  • U † U^{\dagger} U 是矩阵 U U U 的共轭转置矩阵,即 U U U 的转置矩阵再取元素的共轭。
  • I I I 是单位矩阵。

换句话说,矩阵 U U U 的逆矩阵等于它的共轭转置矩阵: U − 1 = U † U^{-1} = U^{\dagger} U1=U

2. 性质

  • 保持内积:酉矩阵保持向量的内积不变,即对于任意向量 v \mathbf{v} v w \mathbf{w} w,有 ⟨ U v , U w ⟩ = ⟨ v , w ⟩ \langle U\mathbf{v}, U\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle Uv,Uw=v,w
  • 规范性:酉矩阵的列向量和行向量都是单位向量,并且相互正交。这意味着每列向量的模为1,且不同列向量的内积为0。
  • 特征值:酉矩阵的特征值的模长为1,即如果 λ \lambda λ U U U 的特征值,那么 ∣ λ ∣ = 1 |\lambda| = 1 λ=1
  • 稳定性:酉矩阵的模不变性在物理学中非常重要,特别是在量子力学中,它表示量子态的演化是稳定的、不改变量子态的整体性质。

3. 使用例子:量子计算中的酉矩阵

在量子计算中,酉矩阵常用于表示量子比特的状态演化。例如,一个量子比特的状态可以表示为向量 ψ = ( α β ) \mathbf{\psi} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} ψ=(αβ),其中 α \alpha α β \beta β 是复数,满足 ∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2 + |\beta|^2 = 1 α2+β2=1

假设我们有一个量子门操作 U U U ,它是一个酉矩阵。比如,帕里矩阵(Hadamard gate)是一个常用的量子门:

H = 1 2 ( 1 1 1 − 1 ) H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} H=2 1(1111)

应用这个量子门 H H H 到量子比特状态 ψ \mathbf{\psi} ψ 上,会得到新的量子状态:

ψ ′ = H ψ = 1 2 ( 1 1 1 − 1 ) ( α β ) = 1 2 ( α + β α − β ) \mathbf{\psi'} = H\mathbf{\psi} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix} ψ=Hψ=2 1(1111)(αβ)=2 1(α+βαβ)

新的量子状态 ψ ′ \mathbf{\psi'} ψ 是通过酉矩阵 H H H 作用得到的,并且这个操作是保范的,即新状态的模仍然为1。

4. 计算例子:验证矩阵是否为酉矩阵

假设我们有以下矩阵 U U U

U = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} U=21 1111111111111111

我们要验证 U U U 是否是一个酉矩阵。

第一步:计算矩阵 U U U 的共轭转置矩阵 U † U^{\dagger} U

U † = U T = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U^{\dagger} = U^{T} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} U=UT=21 1111111111111111

(因为矩阵 U U U 的元素都是实数,所以共轭转置矩阵就是转置矩阵)

第二步:计算 U † U U^{\dagger}U UU

U † U = 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) 1 2 ( 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ) U^{\dagger}U = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix} UU=21 1111111111111111 21 1111111111111111

展开运算结果为:

U † U = 1 4 ( 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4 ) = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) = I U^{\dagger}U = \frac{1}{4} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I UU=41 4000040000400004 = 1000010000100001 =I

因为 U † U = I U^{\dagger}U = I UU=I,所以 U U U 是一个酉矩阵。


http://www.kler.cn/a/287326.html

相关文章:

  • word转pdf
  • 【深度学习】Huber Loss详解
  • R数据分析:有调节的中介与有中介的调节的整体介绍
  • 左神算法基础提升--3
  • [LeetCode] 链表完整版 — 虚拟头结点 | 基本操作 | 双指针法 | 递归
  • 如何通过 Apache Airflow 将数据导入 Elasticsearch
  • git笔记 -- 日志搜索的方法
  • JAVA HttpUrlConnection 使用 GZIP 编码压缩
  • 学习如何更好向GPT提问
  • 从跟跑到领跑:AIGC时代国产游戏的崛起与展望
  • SpringCloud乐尚代驾学习笔记:项目概述(一)
  • prometheus download all
  • PMC如何建立有效的监控系统来及时发现生产计划的偏离?
  • git version 2.37.0 如何删除远程分支
  • 【单片机开发】单片机的烧录方式详解(ICP、IAP、ISP)
  • Datawhale X 李宏毅苹果书 AI夏令营 Task 3
  • 介绍一下KAFKA的ACK机制?
  • 2024前端面试题分享
  • 【mac】MAC命令快速模糊查找文件
  • 遥控器新手操作指南!!!
  • rabbitmq高可用集群搭建
  • 经常失眠、多梦、易惊醒?这个调养好物,助你找回婴儿睡眠~
  • 郑州建站网页手机版
  • 安全升级:Docker部署Redis,启用密码验证
  • 算法基础-区间合并
  • Gartner首次发布AI代码助手魔力象限,阿里云进入挑战者象限,通义灵码产品能力全面领先