当前位置: 首页 > article >正文

yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制之(图像增强是按梯度变化优化)

接上个博客:

https://blog.csdn.net/weixin_43269994/article/details/141753412

优化如下函数:

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

这个函数 augment_and_copy_files 的目的是处理和增强图像,并将处理后的图像及其相关的注释和标签文件复制到指定的输出文件夹中。具体来说,它对图像进行亮度调整,并生成多个增强版本,同时可选择处理和复制对应的注释和标签文件。以下是详细解释:

  • base_folder: 原始数据的基路径。它包含了 images、annotations 和 labels 文件夹。
  • image_filename: 要处理的图像文件名。
  • num_augmentations: 生成的增强图像数量。
  • vgain_range: 亮度增益的范围,包含两个值,起始增益和结束增益。
  • process_labels: 布尔值,指示是否处理标签文件。
  • process_annotations: 布尔值,指示是否处理注释文件。

总体代码:

import cv2
import numpy as np
import os
import shutil


def adjust_brightness(im, vgain):
    hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
    hue, sat, val = cv2.split(hsv)
    val = np.clip(val * vgain, 0, 255).astype(np.uint8)
    enhanced_hsv = cv2.merge((hue, sat, val))
    brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)
    return brightened_img


def create_output_folders(base_folder):
    new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")
    output_folders = {
        "images": os.path.join(new_base_folder, "images"),
        "annotations": os.path.join(new_base_folder, "annotations"),
        "labels": os.path.join(new_base_folder, "labels")
    }
    for folder in output_folders.values():
        os.makedirs(folder, exist_ok=True)
    return output_folders


def copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):
    base_filename, ext = os.path.splitext(os.path.basename(src_path))
    if preserve_ext:
        new_filename = f"{base_filename}{filename_suffix}{ext}"
    else:
        new_filename = f"{base_filename}{filename_suffix}"
    dst_path = os.path.join(dst_folder, new_filename)
    shutil.copy(src_path, dst_path)
    return dst_path


def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    base_filename, image_ext = os.path.splitext(image_filename)

    # 构建原始文件路径
    file_paths = {
        "images": os.path.join(base_folder, "images", image_filename),
    }

    if process_annotations:
        file_paths["annotations"] = os.path.join(base_folder, "annotations", f"{base_filename}.xml")
    if process_labels:
        file_paths["labels"] = os.path.join(base_folder, "labels", f"{base_filename}.txt")

    # 创建输出文件夹
    output_folders = create_output_folders(base_folder)

    # 复制原始图像
    copy_file(file_paths["images"], output_folders["images"], "", preserve_ext=True)

    if process_annotations:
        copy_file(file_paths["annotations"], output_folders["annotations"], "", preserve_ext=True)
    if process_labels:
        copy_file(file_paths["labels"], output_folders["labels"], "", preserve_ext=True)

    # 生成按梯度变化的增益值
    vgain_start, vgain_end = vgain_range
    vgain_step = (vgain_end - vgain_start) / num_augmentations

    for i in range(1, num_augmentations + 1):
        vgain = vgain_start + i * vgain_step
        brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)

        filename_suffix = f"_enhanced_{i}"
        output_image_path = copy_file(file_paths["images"], output_folders["images"], filename_suffix, preserve_ext=True)
        cv2.imwrite(output_image_path, brightened_img)
        print(f"Saved: {output_image_path}")

        if process_annotations:
            copy_file(file_paths["annotations"], output_folders["annotations"], filename_suffix, preserve_ext=True)
            print(f"Copied annotations: {output_image_path}")

        if process_labels:
            copy_file(file_paths["labels"], output_folders["labels"], filename_suffix, preserve_ext=True)
            print(f"Copied labels: {output_image_path}")

    print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")


def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5), process_labels=True, process_annotations=True):
    images_folder = os.path.join(base_folder, "images")
    for image_filename in os.listdir(images_folder):
        if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):
            augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range, process_labels, process_annotations)


# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_16_38\train"
process_all_images_in_folder(base_folder, num_augmentations=10, vgain_range=(1, 3), process_labels=True, process_annotations=False)

http://www.kler.cn/a/289942.html

相关文章:

  • 【gin】http方法了解,以及RESTful API与版本控制
  • ffmpeg 编译遇到的坑
  • centos修改/etc/resolv.conf 重启network后又恢复到原来的状态
  • 金融项目实战 01|功能测试分析与设计
  • 【Rust】控制流
  • ue5 蒙太奇,即上半身动画和下半身组合在一起,并使用。学习b站库得科技
  • 光盘安全隔离与信息单向导入系统-信刻
  • 以人口金字塔图为例,在线绘制左右双侧堆叠条形图
  • 如何设计店铺租赁租凭平台?Java SpringBoot实现全攻略
  • 后端是否开启异步执行,看打印日志的线程信息
  • 多线程篇(可见性 原子性 有序性(原子性))(持续更新迭代)
  • 09J621-2《电动采光排烟天窗》技术详解
  • openharmony历程一:安装ubuntu20.04
  • Vue基础语法
  • ai聊天软件哪个好用?分享5款实用的智能聊天软件
  • Linux云计算学习笔记11 (计划任务)
  • SpringBoot 大学生体质测试管理系统
  • 记录k8s的pod生命周期笔记
  • 巨魔商店2安装教程,支持最新iOS 17.0的所有型号
  • Spring6梳理5——基于XML管理Bean环境搭建
  • 【系统分析师】-面向对象方法
  • 【优质源码】3D多人在线游戏,前端ThreeJS,后端NodeJS
  • 使用 nuxi generate 进行预渲染和部署
  • Unity本地化id查找器,luaparser函数参数查找
  • CAS带来的ABA问题以及解决方案
  • 微小目标检测