当前位置: 首页 > article >正文

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

文章目录

  • 一、基本原理
      • 原理
      • 流程
      • 举个例子
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(KNN分类器)

一、基本原理

鲸鱼智能优化(Whale Optimization Algorithm, WOA)是一种基于鲸鱼捕食行为的自然启发算法,用于解决优化问题。在特征选择中,它可以用来选择对分类器(如KNN分类器)性能影响最大的特征。以下是鲸鱼智能优化在特征选择中的应用原理和流程。

原理

鲸鱼智能优化算法受座头鲸的捕食行为启发,主要模拟座头鲸的“圈捕猎”策略。这个算法包括两个主要步骤:探索和开发。探索阶段鲸鱼在大范围内搜索潜在的解,开发阶段则在当前优秀解附近精细搜索。其核心思想是通过模拟鲸鱼的猎食行为来寻找最优解。

在特征选择中,WOA的目标是选择一组特征,使得分类器(如KNN)的性能(通常是分类准确率)最优。WOA通过在特征子集上进行搜索,优化特征选择,以提高分类器的性能。

流程

  1. 初始化:

    • 定义问题空间:确定特征的总数,并初始化鲸鱼个体的位置。这些位置代表特征的选择状态(选择或不选择)。
    • 设置算法参数:例如鲸鱼的数量、最大迭代次数等。
  2. 编码特征选择:

    • 使用二进制编码来表示特征选择的状态。每个鲸鱼个体对应一个特征子集,0表示不选择该特征,1表示选择该特征。
  3. 评估适应度:

    • 对每个鲸鱼个体所代表的特征子集,使用KNN分类器进行训练和测试,计算分类器的性能指标(如准确率、F1分数等)。
    • 适应度值通常是分类器性能的度量,性能越好,适应度值越高。
  4. 更新位置:

    • 基于鲸鱼的猎食行为更新鲸鱼的位置。主要有两种策略:
      • 圈捕猎:鲸鱼围绕猎物(当前最优解)进行搜索,通过公式调整位置。
      • 随机猎食:鲸鱼随机选择搜索范围内的猎物进行优化。
    • 更新公式会根据当前鲸鱼个体的位置与最优解的位置进行调整,可能包括“缩放”操作来控制搜索的范围。
  5. 更新最优解:

    • 每次迭代后,更新全局最优解。如果当前鲸鱼个体的适应度比全局最优解更好,则更新全局最优解。
  6. 终止条件:

    • 如果达到最大迭代次数或适应度值没有显著提高,算法终止。
  7. 输出结果:

    • 最终选择的特征子集是全局最优解对应的特征集合。

举个例子

假设有10个特征,鲸鱼智能优化算法初始化时随机选择一些特征子集(比如选择第2、4、7个特征)。然后使用KNN分类器评估这些子集的分类性能。通过迭代和调整,算法逐步找到最优的特征子集,使得KNN分类器的分类准确率最高。

总结

鲸鱼智能优化算法通过模拟鲸鱼的自然行为来优化特征选择过程,利用特征子集的适应度值来指导搜索方向,从而提高KNN分类器的性能。这个方法的优点是能够在较大的特征空间中进行有效的搜索,找到最优的特征子集,进而提升分类器的性能。

二、实验结果

数据集可以任意替换

WOA特征选择 KNN分类器
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出


http://www.kler.cn/a/290659.html

相关文章:

  • 安全运营 -- splunk restapi 最小权限
  • Linux终端输入删除键backspace显示^H,输入上下左右键显示^A^B^C^D原理以及详细解决办法!
  • Flutter中的网络请求图片存储为缓存,与定制删除本地缓存
  • 【区块链】零知识证明基础概念详解
  • MySQL 05 章——排序与分页
  • 【C语言】_指针运算
  • idea对项目中的文件操作没有权限
  • 海外合规|新加坡网络安全认证计划简介(三)-Cyber Trust
  • SpringBoot+Redis极简整合
  • springboot集成七牛云上传文件
  • Python画笔案例-030 实现打点之斜正方
  • MATLAB 中的对数计算
  • torch、torchvision、torchtext版本兼容问题
  • ubuntu 22.04安装NVIDIA驱动和CUDA
  • 传统CV算法——基于 SIFT 特征点检测与匹配实现全景图像拼接
  • Java实现根据某个字段对集合进行去重并手动选择被保留的对象
  • vuex 基础使用
  • 网页版修改本地数据器:重新布局,引入 highlight.js高亮显示代码
  • 鸿蒙Next-拉起支付宝的三种方式——教程
  • 【Linux】理解Linux中的软链接与硬链接
  • 传统CV算法——背景建模算法介绍
  • 架构基础 -- 打点系统之FastAPI、python、grafana、prometheus实现
  • Unity数据持久化 之 文件操作(增删查改)
  • 【赵渝强老师】大数据生态圈中的组件
  • 8 自研rgbd相机基于rk3566之sensor图像解析与AWB算法原理
  • SQL语言的规则和规范