当前位置: 首页 > article >正文

经典大语言模型解读(2):生成式预训练的先锋GPT-1

论文地址:Improving Language Understanding by Generative Pre-Training

概述

现实世界中包含了大量的文本语料数据,然而,绝大多数语料都是无标签的。

为了充分利用这些无标签语料库,GPT1.0提出直接利用这些未标记的语料来进行生成式预训练,然后对每个特定任务进行判别式微调(在标注数据上),从而显著提升在这些任务上的性能。

文中涉及的主要NLP任务包括:

  • Textual Entailment:文本蕴含,即给定一个前提文本(premise),根据这个前提文本去推断假说文本(hypothesis)与前提文本之间的关系,关系包括蕴含和矛盾两种。蕴含关系指能从前提文本推断出假说文本,而矛盾关系则指前提文本与假锁文本相矛盾。

  • Question Answer:理解用户提出的问题并从文本或知识库中找到准确的答案。

  • Semantic Similarity Assessment:计算文本之间的相似度。

  • Document Classification:文本分类任务。

下面将对GPT-1的框架进行详细的介绍。

GPT框架

GPT-1遵循了Transformer架构,但模型仅基于Transformer的解码器构建

模型的训练流程分为两个阶段:预训练和微调。

无监督预训练

给定无监督token语料库 U = { u 1 , … , u n } \mathcal{U}=\left\{u_1, \ldots, u_n\right\} U={u1,,un},模型使用标准的语言建模目标来最大化如下似然函数:
L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , … , u i − 1 ; Θ ) L_1(\mathcal{U})=\sum_i \log P\left(u_i \mid u_{i-k}, \ldots, u_{i-1} ; \Theta\right) L1(U)=ilogP(uiuik,,ui1;Θ)

其中 k k k表示上下文窗口大小,条件概率 P P P通过具有参数 Θ \Theta Θ的神经网络来建模。

想了解最大似然估计的可以参考这篇文章:一文搞懂极大似然估计

在本文中,神经网络采用的是多层Transformer编码器,该模型对输入的上下文词馈送到神经网络中,然后通过线性层生成目标词的输出分布:
h 0 = U W e + W p h l = transformer_block ⁡ ( h l − 1 ) ∀ i ∈ [ 1 , n ] P ( u ) = softmax ⁡ ( h n W e T ) \begin{aligned} h_0 & =U W_e+W_p \\ h_l & =\operatorname{transformer\_ block}\left(h_{l-1}\right) \forall i \in[1, n] \\ P(u) & =\operatorname{softmax}\left(h_n W_e^T\right) \end{aligned} h0hlP(u)=UWe+Wp=transformer_block(hl1)i[1,n]=softmax(hnWeT)

其中 U = ( u − k , … , u − 1 ) U=\left(u_{-k}, \ldots, u_{-1}\right) U=(uk,,u1)表示词的上下文向量, n n n是层数, W e W_e We是词嵌入矩阵, W p W_p Wp是位置嵌入矩阵,两者都是可学习的。

有监督微调

在完成预训练后,GPT-1根据有监督的目标任务对预训练模型的参数进行调整。

假设存在带标签的数据集 C \mathcal{C} C,其中每个实例由一个输入词序列 ( x 1 , … , x m ) (x^1, \ldots, x^m) (x1,,xm)和相应的标签 y y y组成。将输入传入预训练模型来获取输入表示 h l m h_l^m hlm,然后将其输入一个额外的线性输出层预测 y y y W y W_y Wy表示该层的可学习参数:
P ( y ∣ x 1 , … , x m ) = softmax ⁡ ( h l m W y ) P\left(y \mid x^1, \ldots, x^m\right)=\operatorname{softmax}\left(h_l^m W_y\right) P(yx1,,xm)=softmax(hlmWy)

在学习的过程中需要最大化如下目标:
L 2 ( C ) = ∑ ( x , y ) log ⁡ P ( y ∣ x 1 , … , x m ) L_2(\mathcal{C})=\sum_{(x, y)} \log P\left(y \mid x^1, \ldots, x^m\right) L2(C)=(x,y)logP(yx1,,xm)

值得注意的是,作者发现将语言建模作为微调的辅助目标有助于学习,因为这可以改善有监督模型的泛化能力和加速收敛。于是,可以得到如下的优化目标:
L 3 ( C ) = L 2 ( C ) + λ ∗ L 1 ( C ) L_3(\mathcal{C})=L_2(\mathcal{C})+\lambda * L_1(\mathcal{C}) L3(C)=L2(C)+λL1(C)

其中 λ \lambda λ为权重。

可以看出,在微调的过程中,唯一需要学习的参数为 W y W_y Wy,这极大地降低了模型的训练成本,同时也能获取到足够好的效果。

特定任务的输入转换

由于NLP任务的广泛性,各类任务的输入差异显著。像文本分类之类的任务可以像上面描述的那样对模型进行微调,而对于像问答和文本蕴含之类的任务,则需要对输入进行修改,才能适配预训练模型进行有效微调。

下图中对GPT-1中的输入转换提供了一个可视化说明。所有转换都包括添加随机初始化的开始和结束标记 ( < s > , < e > ) (<s>,<e>) (<s>,<e>)

Input Transformation

Textual entailment

对于蕴含任务,用分隔符将前提和假设连接起来,中间用分隔符$($)$标记。

Similarity

对于相似性任务,由于两个句子没有固有的顺序,因此需要修改输入序列以包含两种可能的句子顺序(句子之间同样包含分隔符)。两个拼接的序列都独立输入到预训练模型中获取序列表示,之后进行相加后输入被馈送到线性输出层。

Question Answering and Commonsense Reasoning

对于知识问答和因果推理,输入中包含一个上下文文档 z z z、一个问题 q q q和一组可能的答案 { a k } \{a_k\} {ak}。GPT-1将将文档上下文和问题与每个可能的答案连接起来,并在其间添加分隔符,即$[z;q;$;a_k]$。每个凭借的序列同样都利用模型进行独立处理,然后通过Softmax层进行归一化,以产生可能答案的输出分布。

结语

以上便是本文的全部内容,若是觉得不错可以支持一下博主,你们的支持是博主更新的不竭动力。若是有任何问题也敬请批评指正。

原文地址:https://blog.csdn.net/qq_42103091/article/details/141790185
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.kler.cn/a/291081.html

相关文章:

  • 前端多语言
  • 【文件I/O】文件持久化
  • 【设计模式】介绍常见的设计模式
  • 宝塔安装mongodb后,写脚本监控运行状态,关闭后自动重启
  • sql server cdc漏扫数据
  • 人工智能-机器学习之多元线性回归(项目实践一)
  • 【RAG】LongRAG:利用长上下文LLMs增强检索增强生成
  • 假期学习----iOS多线程
  • 神经网络算法 - 一文搞懂模型预训练Pre-training
  • WPS 5亿用户受威胁:APT-C-60利用WPS Office漏洞发动间谍攻击
  • AI相机将用于检测区域内使用手机的司机
  • 『功能项目』主角身旁召唤/隐藏坐骑【20】
  • mac安装hadoop
  • CSS中表示长度的单位有哪些?有什么区别?
  • Maven基本使用(中)
  • ubuntu环境快速安装mysql
  • 关于vue中v-model绑定radio表单元素的说明
  • 开源 AI 智能名片小程序在内容营销中的应用与价值
  • Golang 教程7——切片、映射
  • 掌握TensorFlow:构建您的第一个机器学习模型
  • 算法基础-快速排序
  • JPA关联mybatis
  • GAMES104:10+11游戏引擎中物理系统的基础理论算法和高级应用-学习笔记
  • 流量密码算被你玩明白了!用AI做萌宠+萌娃短视频,百万播放量
  • union_collinear_contours_xld 算子介绍一下,条件关系
  • 【c++】平常自己练习写代码的两个大方向