当前位置: 首页 > article >正文

Opencv中的直方图(3)直方图比较函数compareHist()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

比较两个直方图。

函数 cv::compareHist 使用指定的方法比较两个密集或两个稀疏直方图。
该函数返回 d ( H 1 , H 2 ) d(H_1, H_2) d(H1,H2)
虽然该函数在处理一维、二维或三维的密集直方图时效果很好,但它可能不适合高维的稀疏直方图。在这样的直方图中,由于别名(aliasing)和采样问题,非零直方图bin的坐标可能会略微偏移。为了比较这样的直方图或更一般的加权点的稀疏配置,可以考虑使用 EMD 函数。

compareHist 是 OpenCV 中用于比较两个直方图相似性的函数。这个函数可以用来衡量两个直方图之间的差异或相似程度,常用于图像处理和计算机视觉任务中,比如图像检索、图像匹配或特征比较等。

函数原型1

ouble cv::compareHist
(
	InputArray 	H1,
	InputArray 	H2,
	int 	method 
)		

参数1

  • 参数H1 第一个被比较的直方图。
  • 参数H2 第二个被比较的直方图,与 H1 具有相同的尺寸。
  • 参数method 比较方法,参见 HistCompMethods。

函数原型2

这是一个重载的成员函数,为了方便而提供。它与上述函数的不同之处仅在于它接受的参数。

double cv::compareHist
(
	const SparseMat & 	H1,
	const SparseMat & 	H2,
	int 	method 
)		

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载两幅图像
    cv::Mat image1 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg", cv::IMREAD_GRAYSCALE );
    cv::Mat image2 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu2.png", cv::IMREAD_GRAYSCALE );

    if ( image1.empty() || image2.empty() )
    {
        std::cerr << "Error: Images not found or unable to read." << std::endl;
        return -1;
    }

    // 计算两个图像的直方图
    int histSize           = 256;
    float range[]          = { 0, 256 };
    const float* histRange = { range };
    bool uniform           = true;
    bool accumulate        = false;

    cv::Mat hist1, hist2;
    calcHist( &image1, 1, 0, cv::Mat(), hist1, 1, &histSize, &histRange, uniform, accumulate );
    calcHist( &image2, 1, 0, cv::Mat(), hist2, 1, &histSize, &histRange, uniform, accumulate );

    // 归一化直方图
    cv::normalize( hist1, hist1, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );
    cv::normalize( hist2, hist2, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );

    // 比较两个直方图
    double result_correlation   = compareHist( hist1, hist2, cv::HISTCMP_CORREL );
    double result_chisqr        = compareHist( hist1, hist2, cv::HISTCMP_CHISQR );
    double result_intersect     = compareHist( hist1, hist2, cv::HISTCMP_INTERSECT );
    double result_bhattacharyya = compareHist( hist1, hist2, cv::HISTCMP_BHATTACHARYYA );

    std::cout << "Correlation: " << result_correlation << std::endl;
    std::cout << "Chi-Squared: " << result_chisqr << std::endl;
    std::cout << "Intersection: " << result_intersect << std::endl;
    std::cout << "Bhattacharyya Distance: " << result_bhattacharyya << std::endl;

    return 0;
}

运行结果

在这里插入图片描述

输出结果解释

  1. Correlation (相关性):

    • 含义:相关性比较方法衡量两个直方图之间的线性关系。值范围通常在 -1 到 1 之间。
    • 结果:result_correlation 表示两个直方图的相关性得分。
    • 解释:如果结果接近 1,则表示两个直方图高度相关;如果接近 0,则表示没有相关性;如果接近 -1,则表示负相关。
  2. Chi-Squared (卡方):

    • 含义:卡方比较方法衡量两个直方图之间的差异。值范围通常是非负数。
    • 结果:result_chisqr 表示两个直方图的卡方得分。
    • 解释:如果结果接近 0,则表示两个直方图非常相似;如果结果较大,则表示两个直方图差异较大。
  3. Intersection (交集):

    • 含义:交集比较方法衡量两个直方图的交集部分。值范围通常在 0 到 1 之间。
    • 结果:result_intersect 表示两个直方图的交集得分。
    • 解释:如果结果接近 1,则表示两个直方图高度重合;如果接近 0,则表示几乎没有重合。
  4. Bhattacharyya Distance (巴塔查里雅距离):

    • 含义:巴塔查里雅距离衡量两个概率分布之间的相似性。值范围通常是非负数。
    • 结果:result_bhattacharyya 表示两个直方图的巴塔查里雅距离。
    • 解释:如果结果接近 0,则表示两个直方图非常相似;如果结果较大,则表示两个直方图差异较大。

http://www.kler.cn/a/293019.html

相关文章:

  • 使用Docker快速部署FastAPI Web应用
  • Autosar CP 基于CAN的时间同步规范导读
  • POI实现根据PPTX模板渲染PPT
  • 图像处理实验二(Image Understanding and Basic Processing)
  • 设计模式:工厂方法模式和策略模式
  • gdb编译教程(支持linux下X86和ARM架构)
  • 原码、反码、补码及用途
  • 微信小程序开发,使用神卓互联内网穿透做公网地址回调的教程
  • python测试开发基础---线程和进程的概念
  • pytorch初始化张量并填充随机整数值
  • 【Linux详解】命令行参数|环境变量
  • OpenAI SORA团队负责人 通往智能的方式 报告笔记
  • 网络层 V(IPv6)【★★★★★★】
  • k8s-pod 实战三 (Liveness Probe 和 Readiness Probe 详细分析)
  • Stage 模型应用程序包的结构
  • Java设计模式【命令模式】-行为型
  • 国内领先线上运动平台:如何借助AI技术实现业务腾飞与用户体验升级
  • HarmonyOS开发实战( Beta5版)合理使用动画丢帧规范实践
  • 替换Windows AD时,网络准入场景如何迁移对接国产身份域管?
  • Linux——中间件、数据库(理论)
  • 2024高教社杯全国大学生数学建模竞赛(A题)深度剖析 _ 建模完整过程+详细思路+代码全解析
  • Quartz.Net_依赖注入
  • GitHub Copilot的详细介绍
  • RHCE必过技巧,无需本人参加也可拿证?
  • 紫光展锐完成Android 15同步升级,驱动技术创新与生态共赢
  • 【区块链 + 人才服务】紫金研究院知识库管理系统 | FISCO BCOS应用案例