当前位置: 首页 > article >正文

完整指南:CNStream流处理多路并发框架适配到NVIDIA Jetson Orin (二) 源码架构流程梳理、代码编写

目录

1 视频解码代码编写----利用jetson-ffmpeg

1.1 nvstream中视频解码的代码流程框架

1.1.1 类的层次关系

1.1.2 各个类的初始化函数调用层次关系

1.1.3 各个类的process函数调用层次关系

1.2 编写视频解码代码

1.2.1 修改VideoInfo结构体定义

1.2.2 修改解封装代码

1.2.3 decode_impl_nv.hpp

1.2.4 decode_impl_nv.cpp

2 硬件相关的图像格式、内存申请接口、内存释放、内存释放等代码修改

2.1 infer_server/include/common/utils.hpp文件内容修改

 2.2 cuda的四种内存

2.3 infer_server/src/core/device.cpp修改

3 图像缩放、裁剪、色域转换等代码编写----利用CV-CUDA

3.1 nvstream中图像处理代码流程框架

3.1.1 类的层次关系

3.1.2 各个类的初始化函数调用层次关系

3.1.3 各个类的transform函数调用层次关系

3.2 编写图像缩放、裁剪、色域转换等代码

3.2.1 infer_server/src/nv/transform_impl_nv.hpp

3.2.2 infer_server/src/nv/transform_impl_nv.cpp

4 算法推理相关代码修改

4.1 ./infer_server/src/model/model.h

4.2 ./infer_server/src/model/model.cpp

5 其他代码修改

参考文献:


记录下将CNStream流处理多路并发Pipeline框架适配到NVIDIA Jetson AGX Orin的过程,以及过程中遇到的问题,我的jetson盒子是用jetpack5.1.3重新刷机之后的,这是系列博客的第二篇。

另外下面的代码只是初步代码,未编译,未调试。

1 视频解码代码编写----利用jetson-ffmpeg

用jetson-ffmpeg来做视频解码,本质上还是用ffmpeg解码,是不是jetson-ffmpeg底层调用了英伟达的nvmpi做硬件加速。

1.1 nvstream中视频解码的代码流程框架

视频解码的代码流程框架在博客:aclStream流处理多路并发Pipeline框架中 视频解码 代码调用流程整理、类的层次关系整理、回调函数赋值和调用流程整理-CSDN博客

上面博客里面的是详细代码阅读,从中提炼出来简单点的框架

1.1.1 类的层次关系

class FileHandler类里面有个FileHandlerImpl *impl_ = nullptr成员
        -->class FileHandlerImpl
                -->class FFParser 解封装的类
                -->class DeviceDecoder
                       -->class DecodeService
                               -->class IDecoder 只是个虚基类,被用来继承的               
                                       -->IDecoder *decoder_ = CreateDecoder();这里面就是new DecoderAcl()了。 DecoderAcl继承IDecoder 
                                               -->再往下就是各种的硬件相关的类了, 

 上面是类的关系,这次英伟达平台上就是从IDecoder *decoder_ = CreateDecoder();开始写一个新的类然后用来做具体的解码,上层的那些类还是保持不变的。

1.1.2 各个类的初始化函数调用层次关系

FileHandlerImpl::Open()
  std::thread(&FileHandlerImpl::Loop
    PrepareResources()
      parser_.Open
        impl_->Open(url, result, only_key_frame);
          result_->OnParserInfo(info);     
            decoder_->Create(info, &extra)这个decoder_就是DeviceDecoder类
              VdecCreate(void **vdec, VdecCreateParams *params) 这是个单纯的函数,不在任何类里面,函数内容在下一行
                 infer_server::DecodeService::Instance().Create(vdec, params);
                   DecodeService::Create里面有下面两行
                       IDecoder *decoder_ = CreateDecoder()先创建DecoderAcl                    
                       decoder_->Create(params)然后调用DecoderAcl 的create函数,   
                       再往下就是硬件相关的各种类的init和open函数了,这次英伟达的也是要创建个新的类,然后在这里新类的
                       open或者init函数被调用    

1.1.3 各个类的process函数调用层次关系

process分两个方向,一个是从上到下送解码数据的,另一个是解码完之后获取解码数据,然后从下往上回传的。先看从上到下送frame的流程

bool FileHandlerImpl::Process() {
parser_.Parse();
   impl_->Parse();
      result_->OnParserFrame(&frame);
        DeviceDecoder::Process(VideoEsPacket *pkt) {    
          int VdecSendStream(void *vdec, const VdecStream *stream, int timeout_ms)
          {
             return infer_server::DecodeService::Instance().SendStream(vdec, stream, timeout_ms);
           }
              decoder_->SendStream(stream, timeout_ms);这就已经是DecoderAcl的sendstream了,已经到硬件了。
                 vdec_->Decode(data_ptr, data_size, frame_id, this);vdec_是AclLiteVideoProc
                 再往下就不看了,下面几层类都是硬件解码的。

然后看一下从下往上回传的,就是解码之后的数据一层层传到上层的类。

VideoDecoder::DvppVdecCallbackV2(hi_video_frame_info *frame, void *userdata) {
  CallBackVdec(const std::shared_ptr<acllite::ImageData> decoded_image, uint32_t channel_id, uint32_t frame_id, v
     decoder->OnFrame(decoded_image, channel_id, frame_id);这个decoder就是DecoderAcl类,
        create_params_.OnFrame(surf, create_params_.userdata);
            OnFrame_(BufSurface *surf, void *userdata)class DeviceDecoder类
                result_->OnDecodeFrame(wrapper);
                    FileHandlerImpl::OnDecodeFrame

1.2 编写视频解码代码

从上面分析可以知道,需要写一个类,替换掉之前的底层硬件解码类,在jetson上,用jetson-ffmpeg做解码,jetson-ffmpeg会调用硬件加速。

1.2.1 修改VideoInfo结构体定义

首先修改一个结构体的定义,因为之前的cnstream中解码不是用ffmpeg解码的,他只是用ffmpeg解封装,所以这个结构体定义是这样的modules/source/src/video_parser.hpp,他由于不用ffmpeg解码所以不需要 AVCodecParameters* codecpar = nullptr成员。

namespace cnstream {

struct VideoInfo {
  AVCodecID codec_id;
#ifdef HAVE_FFMPEG_AVDEVICE  // for usb camera
  int format;
  int width;
  int height;
#endif
  int progressive;
  std::vector<unsigned char> extra_data;
};

...其他代码...

然后在解码的demo那里,easydk/samples/simple_demo/common/video_parser.h,还有一个结构体的定义。

struct VideoInfo {
  AVCodecID codec_id = AV_CODEC_ID_NONE;
#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
  AVCodecParameters* codecpar = nullptr;
#endif
  AVCodecContext* codec_ctx = nullptr;
  std::vector<uint8_t> extra_data{};
  int width = 0;
  int height = 0;
  int progressive = 0;
};

所以我这里要修改一下这个结构体的定义,把第一个的结构体定义改成下面的格式。

namespace cnstream {

struct VideoInfo {
  AVCodecID codec_id;
#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
  AVCodecParameters* codecpar = nullptr;
#endif
  AVCodecContext* codec_ctx = nullptr;
  std::vector<unsigned char> extra_data;
  int width;
  int height;
  int progressive;
#ifdef HAVE_FFMPEG_AVDEVICE  // for usb camera
  int format;
#endif
};

1.2.2 修改解封装代码

然后解封装那里的代码,需要修改一下给AVCodecParameters* codecpar成员赋值。参考CNStream中easydk/samples/simple_demo/common/video_parser.cpp的代码去修改NVStream中modules/source/src/video_parser.cpp的代码,

       int Open(const std::string& url, IParserResult* result, bool only_key_frame = false) {
            std::unique_lock<std::mutex> guard(mutex_);
            if (!result) return -1;
            result_ = result;
            // format context
            fmt_ctx_ = avformat_alloc_context();
            if (!fmt_ctx_) {
                return -1;
            }
            url_name_ = url;

            AVInputFormat* ifmt = NULL;
            // for usb camera
#ifdef HAVE_FFMPEG_AVDEVICE
            const char* usb_prefix = "/dev/video";
            if (0 == strncasecmp(url_name_.c_str(), usb_prefix, strlen(usb_prefix))) {
                // open v4l2 input
#if defined(__linux) || defined(__unix)
                ifmt = av_find_input_format("video4linux2");
                if (!ifmt) {
                    LOGE(SOURCE) << "[" << stream_id_ << "]: Could not find v4l2 format.";
                    return false;
                }
#elif defined(_WIN32) || defined(_WIN64)
                ifmt = av_find_input_format("dshow");
                if (!ifmt) {
                    LOGE(SOURCE) << "[" << stream_id_ << "]: Could not find dshow.";
                    return false;
                }
#else
                LOGE(SOURCE) << "[" << stream_id_ << "]: Unsupported Platform";
                return false;
#endif
            }
#endif
            int ret_code;
            const char* p_rtsp_start_str = "rtsp://";
            if (0 == strncasecmp(url_name_.c_str(), p_rtsp_start_str, strlen(p_rtsp_start_str))) {
                AVIOInterruptCB intrpt_callback = { InterruptCallBack, this };
                fmt_ctx_->interrupt_callback = intrpt_callback;
                last_receive_frame_time_ = GetTickCount();
                // options
                av_dict_set(&options_, "buffer_size", "1024000", 0);
                av_dict_set(&options_, "max_delay", "500000", 0);
                av_dict_set(&options_, "stimeout", "20000000", 0);
                av_dict_set(&options_, "rtsp_flags", "prefer_tcp", 0);
                rtsp_source_ = true;
            }
            else {
                // options
                av_dict_set(&options_, "buffer_size", "1024000", 0);
                av_dict_set(&options_, "max_delay", "500000", 0);
            }

            // open input
            ret_code = avformat_open_input(&fmt_ctx_, url_name_.c_str(), ifmt, &options_);
            if (0 != ret_code) {
                LOGI(SOURCE) << "[" << stream_id_ << "]: Couldn't open input stream -- " << url_name_;
                return -1;
            }
            // find video stream information
            ret_code = avformat_find_stream_info(fmt_ctx_, NULL);
            if (ret_code < 0) {
                LOGI(SOURCE) << "[" << stream_id_ << "]: Couldn't find stream information -- " << url_name_;
                return -1;
            }

            // fill info
            VideoInfo video_info;
            VideoInfo* info = &video_info;
            int video_index = -1;
            AVStream* st = nullptr;
            for (uint32_t loop_i = 0; loop_i < fmt_ctx_->nb_streams; loop_i++) {
                st = fmt_ctx_->streams[loop_i];
#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
                if (st->codecpar->codec_type == AVMEDIA_TYPE_VIDEO) {
#else
                if (st->codec->codec_type == AVMEDIA_TYPE_VIDEO) {
#endif
                    video_index = loop_i;
                    break;
                }
            }
            if (video_index == -1) {
                LOGI(SOURCE) << "[" << stream_id_ << "]: Couldn't find a video stream -- " << url_name_;
                return -1;
            }
            video_index_ = video_index;
            
            info->width = st->codecpar->width;
            info->height = st->codecpar->height;

#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
            info->codec_id = st->codecpar->codec_id;
            int field_order = st->codecpar->field_order;
#ifdef HAVE_FFMPEG_AVDEVICE  // for usb camera
            info->format = st->codecpar->format;
#endif
#else
            info->codec_id = st->codec->codec_id;
            int field_order = st->codec->field_order;
#ifdef HAVE_FFMPEG_AVDEVICE  // for usb camera
            info->format = st->codec->format;
#endif

#endif

#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
            info->codecpar = fmt_ctx_->streams[video_index_]->codecpar;
#endif
            info->codec_ctx = fmt_ctx_->streams[video_index_]->codec;

            /*At this moment, if the demuxer does not set this value (avctx->field_order == UNKNOWN),
             *   the input stream will be assumed as progressive one.
             */
            switch (field_order) {
            case AV_FIELD_TT:
            case AV_FIELD_BB:
            case AV_FIELD_TB:
            case AV_FIELD_BT:
                info->progressive = 0;
                break;
            case AV_FIELD_PROGRESSIVE:  // fall through
            default:
                info->progressive = 1;
                break;
            }

#if LIBAVFORMAT_VERSION_INT >= FFMPEG_VERSION_3_1
            unsigned char* extradata = st->codecpar->extradata;
            int extradata_size = st->codecpar->extradata_size;
#else
            unsigned char* extradata = st->codec->extradata;
            int extradata_size = st->codec->extradata_size;
#endif

            if (extradata && extradata_size) {
                info->extra_data.resize(extradata_size);
                memcpy(info->extra_data.data(), extradata, extradata_size);
            }
            // bitstream filter
            bsf_ctx_ = nullptr;
            const AVBitStreamFilter *pfilter{};
            if (strstr(fmt_ctx_->iformat->name, "mp4") || strstr(fmt_ctx_->iformat->name, "flv") ||
                strstr(fmt_ctx_->iformat->name, "matroska")) {
                if (AV_CODEC_ID_H264 == info->codec_id) {
                    pfilter = av_bsf_get_by_name("h264_mp4toannexb");
                }
                else if (AV_CODEC_ID_HEVC == info->codec_id) {
                    pfilter = av_bsf_get_by_name("hevc_mp4toannexb");
                }
                else {
                    pfilter = nullptr;
                }
            }
            if (pfilter == nullptr) {
                bsf_ctx_ = nullptr;
            }
            else {
                av_bsf_alloc(pfilter, &bsf_ctx_);
            }

            if (result_) {
                result_->OnParserInfo(info);
            }
            av_init_packet(&packet_);
            first_frame_ = true;
            eos_reached_ = false;
            open_success_ = true;
            only_key_frame_ = only_key_frame;
            return 0;
        }

1.2.3 decode_impl_nv.hpp

创建个新的类,用来做视频解码,初步代码如下,后面编译以及运行的时候有错误再修改。

#ifndef _DECODE_IMPL_NV_HPP_
#define _DECODE_IMPL_NV_HPP_

#include <atomic>
#include <string>

#include <libavformat/avformat.h>
#include <libavcodec/avcodec.h>
#include "../decode_impl.hpp"

namespace infer_server {

    class DecodeFFmpeg  : public IDecoder {
    public:
        DecodeFFmpeg()  = default;
        ~DecodeFFmpeg() = default;
        int Create(VdecCreateParams *params) override;
        int Destroy() override;
        int SendStream(const VdecStream *stream, int timeout_ms) override;
        void OnFrame(AVFrame *av_frame_, uint32_t frame_id) override;
        void OnEos() override;
        void OnError(int errcode) override;

    private:
        void ResetFlags();

    private:
        std::atomic<bool> eos_sent_{false};  // flag for acl eos has been sent to decoder
        std::atomic<bool> created_{false};
        VdecCreateParams create_params_;
        AVCodec *av_codec_;
        AVCodecContext* codec_context_{nullptr};
        AVFrame *av_frame_ = nullptr;
        void *transformer_{};
};


}  // namespace 
#endif // DECODE_IMPL_NV_HPP

1.2.4 decode_impl_nv.cpp

#include <iostream>

#include "glog/logging.h"
#include "decode_impl_nv.hpp"
#include "defer.hpp"


namespace infer_server {

    bool DecodeFFmpeg::Create(VdecCreateParams *params) {
        create_params_ = *params;
        
        switch (params->type) {
        case VDEC_TYPE_H264:
            av_codec_ = avcodec_find_decoder(AV_CODEC_ID_H264);
            break;
        case VDEC_TYPE_H265:
            av_codec_ = avcodec_find_decoder(AV_CODEC_ID_H265);
            break;
        case VDEC_TYPE_JPEG:
        default:
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] Create(): Unsupported codec type: " << create_params_.type;
            return -1;
        }

        if (!av_codec_) {
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] avcodec_find_decoder failed";
            return false;
        }

        codec_context_ = avcodec_alloc_context3(av_codec_);
        if (!codec_context_) {
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] Failed to do avcodec_alloc_context3";
            return false;
        }


        AVDictionary *decoder_opts = nullptr;
        defer([&decoder_opts] {
            if (decoder_opts) av_dict_free(&decoder_opts);
        });

        av_dict_set_int(&decoder_opts, "device_id", 0, 0);

        if (avcodec_open2(codec_context_, av_codec_,  &decoder_opts) < 0) {
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] Failed to open codec";
            return false;
        }
        av_frame_ = av_frame_alloc();
        if (!av_frame_) {
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] Could not alloc frame";
            return false;
        } 

        ResetFlags();

        //待修改
        //这里还需要增加创建transform用来做图像缩放的代码。

        created_ = true;

        return true;
    }


    int DecodeFFmpeg::SendStream(const VdecStream *stream, int timeout_ms) {

        if (!created_) {
            LOG(ERROR) << "[InferServer] [DecodeFFmpeg] SendStream(): Decoder is not created";
            return -1;
        }

        if (nullptr == stream || nullptr == stream->bits) {
            if (eos_sent_) {
                LOG(WARNING) << "[InferServer] [DecodeFFmpeg] SendStream(): EOS packet has been send";
                return 0;
            }
             
            AVPacket framePacket = {};
            av_init_packet(&framePacket);
        
            framePacket.data = nullptr;
            framePacket.size = 0;
            
            avcodec_send_packet(decode_, &packet);
            // flush all frames ...
            int ret = 0;
            do {
                ret = avcodec_receive_frame(decode_, av_frame_);
                if(ret >= 0)
                {
                    OnFrame(av_frame_, stream->pts);
                }

            } while (ret >= 0);
            eos_sent_ = true;
            OnEos();
        }
        else{
            if (eos_sent_) {
                LOG(ERROR) << "[InferServer] [DecodeFFmpeg] SendStream(): EOS has been sent, process packet failed, pts:"
                    << stream->pts;
                return -1;
            }
            AVPacket framePacket = {};
            av_init_packet(&framePacket);
        
            framePacket.data = stream.bits;
            framePacket.size = stream.len;

            //开始解码
            int ret = avcodec_send_packet(codec_context_, framePacket);
            if (ret < 0) {
                LOG(ERROR) << "[InferServer] [DecodeFFmpeg] avcodec_send_packet failed, data ptr, size:"
                        << framePacket->data << ", " << framePacket->size;
                return false;
            }
            ret = avcodec_receive_frame(codec_context_, av_frame_);
            OnFrame(av_frame_, stream->pts);
        }
    }


    void DecodeFFmpeg::OnFrame(AVFrame *av_frame_, uint32_t frame_id) {

        BufSurface *surf = nullptr;
        if (create_params_.GetBufSurf(&surf, av_frame_->width, av_frame_->height, CastColorFmt(av_frame_->format),
            create_params_.surf_timeout_ms, create_params_.userdata) < 0) {
            LOG(ERROR) << "[InferServer] [DecoderAcl] OnFrame(): Get BufSurface failed";
            OnError(-1);
            return;
        }
        if (surf->mem_type != BUF_MEMORY_DVPP) {
            LOG(ERROR) << "[InferServer] [DecoderAcl] OnFrame(): BufSurface memory type must be BUF_MEMORY_DVPP";
            return;
        }

        switch (av_frame_->format) {
        case acllite::ImageFormat::YUV_SP_420:
        case acllite::ImageFormat::YVU_SP_420:
            if (surf->surface_list[0].width != av_frame_->width || surf->surface_list[0].height != av_frame_->height) {
                BufSurface transform_src;
                BufSurfaceParams src_param;
                memset(&transform_src, 0, sizeof(BufSurface));
                memset(&src_param, 0, sizeof(BufSurfaceParams));

                src_param.color_format = CastColorFmt(av_frame_->format);
                src_param.data_size = codec_image->size;//待修改。
                src_param.data_ptr = reinterpret_cast<void *>(codec_image->data.get());//待修改。

                VLOG(5) << "[InferServer] [DecoderAcl] OnFrame(): codec_frame: "
                    << " width = " << av_frame_->width
                    << ", height = " << av_frame_->height
                    << ", width stride = " << av_frame_->alignWidth
                    << ", height stride = " << av_frame_->alignHeight;
                VLOG(5) << "[InferServer] [DecoderAcl] OnFrame(): surf->surface_list[0]: "
                    << " width = " << surf->surface_list[0].width
                    << ", height = " << surf->surface_list[0].height
                    << ", width stride = " << surf->surface_list[0].width_stride
                    << ", height stride = " << surf->surface_list[0].height_stride;

                src_param.width = av_frame_->width;
                src_param.height = av_frame_->height;
                src_param.width_stride = codec_image->alignWidth;//待修改。
                src_param.height_stride = codec_image->alignHeight;//待修改。

                transform_src.batch_size = 1;
                transform_src.num_filled = 1;
                transform_src.device_id = create_params_.device_id;
                transform_src.mem_type = BUF_MEMORY_DVPP;
                transform_src.surface_list = &src_param;

                TransformParams trans_params;
                memset(&trans_params, 0, sizeof(trans_params));
                trans_params.transform_flag = TRANSFORM_RESIZE_SRC;

                if (Transform(transformer_, &transform_src, surf, &trans_params) < 0) {
                    LOG(ERROR) << "[InferServer] [DecoderAcl] OnFrame(): Transfrom failed";
                    break;
                }
            }
            else {
                std::chrono::high_resolution_clock::time_point tnow = std::chrono::high_resolution_clock::now();
                CALL_ACL_FUNC(acllite::CopyDataToHostEx(surf->surface_list[0].data_ptr, codec_image->size, codec_image->data.get(), codec_image->size, codec_image->deviceId)
                   , "[DecoderAcl] OnFrame(): copy codec buffer data to surf failed");
                             
                std::chrono::high_resolution_clock::time_point tpost = std::chrono::high_resolution_clock::now();
                //std::cout << "<<<<<<================================ CopyDataToHostEx time = " << std::chrono::duration_cast<std::chrono::duration<double>>(tpost - tnow).count() * 1000 << " ms" << std::endl;
   
            }
            break;
        default:
            break;
        }

        surf->pts = frame_id;
        
        //std::chrono::high_resolution_clock::time_point tnow = std::chrono::high_resolution_clock::now();
        create_params_.OnFrame(surf, create_params_.userdata);
        //std::chrono::high_resolution_clock::time_point tpost = std::chrono::high_resolution_clock::now();
        //std::cout << "<<<<<<================================ create_params_.OnFrame time = " << std::chrono::duration_cast<std::chrono::duration<double>>(tpost - tnow).count() * 1000 << " ms" << std::endl;
    }

    void DecodeFFmpeg::Destroy() {

        if (!created_) {
            LOG(WARNING) << "[InferServer] [DecoderAcl] Destroy(): Decoder is not created";
            return 0;
        }
        
        // if error happened, destroy directly, eos maybe not be transmitted from the decoder
        if (!eos_sent_) {
            SendStream(nullptr, 10000);
        }

        ResetFlags();

        if (av_frame_) {
            av_frame_free(&av_frame_);
            av_frame_ = nullptr;
        }
        if (codec_context_) {
            avcodec_close(codec_context_);
            avcodec_free_context(&codec_context_);
            codec_context_ = nullptr;
        }

        //待修改,还需要增加销毁transform的相关代码。
    }


    DecodeFFmpeg::~DecodeFFmpeg() {
        DecodeFFmpeg::Destroy();
    }

    void DecodeFFmpeg::ResetFlags() {
        eos_sent_ = false;
        created_ = false;
    }

    void DecodeFFmpeg::OnEos() {
        create_params_.OnEos(create_params_.userdata);
    }
   
    void DecodeFFmpeg::OnError(int errcode) {
        //convert the error code
        create_params_.OnError(static_cast<int>(errcode), create_params_.userdata);
    }

}  // namespace 

2 硬件相关的图像格式、内存申请接口、内存释放、内存释放等代码修改

infer_server/include/common/utils.hpp文件内容如下

/*************************************************************************
 * Copyright (C) [2022] by Cambricon, Inc. All rights reserved
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *************************************************************************/

#ifndef COMMON_UTILS_HPP_
#define COMMON_UTILS_HPP_

#include <string>

#include <glog/logging.h>

#include "buf_surface.h"

#include "AclLite/AclLite.h"

#define _SAFECALL(func, expected, msg, ret_val)                                                     \
  do {                                                                                              \
    int _ret = (func);                                                                              \
    if ((expected) != _ret) {                                                                       \
      LOG(ERROR) << "[InferServer] Call [" << #func << "] failed, ret = " << _ret << ". " << msg;        \
      return (ret_val);                                                                             \
        }                                                                                               \
    } while (0)

#define ACL_SAFECALL(func, msg, ret_val) _SAFECALL(func, acllite::ACLLITE_OK, msg, ret_val)

#define _CALLFUNC(func, expected, msg)                                                     \
  do {                                                                                              \
    int _ret = (func);                                                                              \
    if ((expected) != _ret) {                                                                       \
      LOG(ERROR) << "[InferServer] Call [" << #func << "] failed, ret = " << _ret << ". " << msg;        \
                }                                                                                               \
        } while (0)

#define CALL_ACL_FUNC(func, msg) _CALLFUNC(func, acllite::ACLLITE_OK, msg)

inline BufSurfaceMemType CastMemoryType(acllite::MemoryType type) noexcept{
    switch (type) {
#define RETURN_MEMORY_TYPE(type) \
  case acllite::MemoryType::type:         \
    return BUF_##type;
        RETURN_MEMORY_TYPE(MEMORY_HOST)
            RETURN_MEMORY_TYPE(MEMORY_DEVICE)
            RETURN_MEMORY_TYPE(MEMORY_DVPP)
            RETURN_MEMORY_TYPE(MEMORY_NORMAL)
#undef RETURN_MEMORY_TYPE
  default:
      LOG(ERROR) << "[InferServer] CastMemoryType(): Unsupported memory type";
      return BUF_MEMORY_HOST;
    }
}

inline acllite::MemoryType CastMemoryType(BufSurfaceMemType type) noexcept{
    switch (type) {
#define RETURN_MEMORY_TYPE(type)    \
  case BUF_##type: \
    return acllite::MemoryType::type;
        RETURN_MEMORY_TYPE(MEMORY_HOST)
            RETURN_MEMORY_TYPE(MEMORY_DEVICE)
            RETURN_MEMORY_TYPE(MEMORY_DVPP)
            RETURN_MEMORY_TYPE(MEMORY_NORMAL)
#undef RETURN_MEMORY_TYPE
  default:
      LOG(ERROR) << "[InferServer] CastMemoryType(): Unsupported memory type";
      return acllite::MemoryType::MEMORY_HOST;
    }
}

inline BufSurfaceColorFormat CastColorFmt(acllite::ImageFormat format) {
    static std::map<acllite::ImageFormat, BufSurfaceColorFormat> color_map{
        { acllite::ImageFormat::YUV_SP_420, BUF_COLOR_FORMAT_NV12 },
        { acllite::ImageFormat::YVU_SP_420, BUF_COLOR_FORMAT_NV21 },
        { acllite::ImageFormat::RGB_888, BUF_COLOR_FORMAT_RGB },
        { acllite::ImageFormat::BGR_888, BUF_COLOR_FORMAT_BGR },
    };
    return color_map[format];
}

inline acllite::ImageFormat CastColorFmt(BufSurfaceColorFormat format) {
    static std::map<BufSurfaceColorFormat, acllite::ImageFormat> color_map{
        { BUF_COLOR_FORMAT_NV12, acllite::ImageFormat::YUV_SP_420 },
        { BUF_COLOR_FORMAT_NV21, acllite::ImageFormat::YVU_SP_420 },
        { BUF_COLOR_FORMAT_RGB, acllite::ImageFormat::RGB_888 },
        { BUF_COLOR_FORMAT_BGR, acllite::ImageFormat::BGR_888 },
    };
    return color_map[format];
}

#endif  // COMMON_UTILS_HPP_

上面这个文件内容目前是改成了华为acl相关的,现在把整个成功移植到英伟达的Jetson,那么这个文件的内容也要修改,另外,整个工程中所有用到了ACL_SAFECALL和CALL_ACL_FUNC的地方,不仅要把ACL_SAFECALL和CALL_ACL_FUNC这两个名字改掉,还要把用到这两个名字的硬件相关接口全都修改掉,比如

比如这张截图中,所有的这些acllite::AclLiteMalloc   acllite::AclLiteFree acllite::AclLiteMemcpy这些接口都要相应的改成英伟达Jetson平台的接口。

2.1 infer_server/include/common/utils.hpp文件内容修改

/*************************************************************************
 * Copyright (C) [2022] by Cambricon, Inc. All rights reserved
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *************************************************************************/

#ifndef COMMON_UTILS_HPP_
#define COMMON_UTILS_HPP_

#include <string>

#include <glog/logging.h>

#include "buf_surface.h"

#include "cuda_runtime.h"
#include "nvcv/ImageFormat.h"

#define _SAFECALL(func, expected, msg, ret_val)                                                     \
  do {                                                                                              \
    int _ret = (func);                                                                              \
    if ((expected) != _ret) {                                                                       \
      LOG(ERROR) << "[InferServer] Call [" << #func << "] failed, ret = " << _ret << ". " << msg;        \
      return (ret_val);                                                                             \
        }                                                                                               \
    } while (0)

#define CUDA_SAFECALL(func, msg, ret_val) _SAFECALL(func, cudaSuccess, msg, ret_val)

#define _CALLFUNC(func, expected, msg)                                                     \
  do {                                                                                              \
    int _ret = (func);                                                                              \
    if ((expected) != _ret) {                                                                       \
      LOG(ERROR) << "[InferServer] Call [" << #func << "] failed, ret = " << _ret << ". " << msg;        \
                }                                                                                               \
        } while (0)

#define CALL_CUDA_FUNC(func, msg) _CALLFUNC(func, cudaSuccess, msg)

inline BufSurfaceMemType CastMemoryType(cudaMemoryType type) noexcept{
    switch (type) {
    case cudaMemoryTypeUnregistered:
        return BUF_MEMORY_UNREGISTERED;
    case cudaMemoryTypeHost:
        return BUF_MEMORY_HOST;
    case cudaMemoryTypeDevice:
        return BUF_MEMORY_DEVICE;
    case cudaMemoryTypeManaged:
        return BUF_MEMORY_MANAGED;
  default:
      LOG(ERROR) << "[InferServer] CastMemoryType(): Unsupported memory type";
      return BUF_MEMORY_HOST;
    }
}

inline cudaMemoryType CastMemoryType(BufSurfaceMemType type) noexcept{
    switch (type) {
    case BUF_MEMORY_UNREGISTERED:
        return cudaMemoryTypeUnregistered;
    case BUF_MEMORY_HOST:
        return cudaMemoryTypeHost;
    case BUF_MEMORY_DEVICE:
        return cudaMemoryTypeDevice;
    case BUF_MEMORY_MANAGED:
        return cudaMemoryTypeManaged;
  default:
      LOG(ERROR) << "[InferServer] CastMemoryType(): Unsupported memory type";
      return cudaMemoryTypeHost;
    }
}

inline BufSurfaceColorFormat CastColorFmt(NVCVImageFormat format) {
    static std::map<NVCVImageFormat, BufSurfaceColorFormat> color_map{
        { NVCV_IMAGE_FORMAT_NV12, BUF_COLOR_FORMAT_NV12 },
        { NVCV_IMAGE_FORMAT_NV21, BUF_COLOR_FORMAT_NV21 },
        { NVCV_IMAGE_FORMAT_RGB8, BUF_COLOR_FORMAT_RGB },
        { NVCV_IMAGE_FORMAT_BGR8, BUF_COLOR_FORMAT_BGR },
    };
    return color_map[format];
}

inline NVCVImageFormat CastColorFmt(BufSurfaceColorFormat format) {
    static std::map<BufSurfaceColorFormat, NVCVImageFormat> color_map{
        { BUF_COLOR_FORMAT_NV12, NVCV_IMAGE_FORMAT_NV12 },
        { BUF_COLOR_FORMAT_NV21, NVCV_IMAGE_FORMAT_NV21 },
        { BUF_COLOR_FORMAT_RGB, NVCV_IMAGE_FORMAT_RGB8 },
        { BUF_COLOR_FORMAT_BGR, NVCV_IMAGE_FORMAT_BGR8 },
    };
    return color_map[format];
}

#endif  // COMMON_UTILS_HPP_

 2.2 cuda的四种内存

在CUDA编程中,内存类型是指定数据应该存储在哪种类型的内存中的关键概念。CUDA支持多种内存类型,每种类型都有其特定的用途和性能特点。以下是你提到的几种CUDA内存类型的解释和区别:

  1. cudaMemoryTypeUnregistered

    • 这个枚举值表示内存类型未注册。在CUDA中,通常不会直接使用这个值,因为它表示内存没有被明确指定为主机或设备内存。
  2. cudaMemoryTypeHost

    • 这表示内存是分配在主机(CPU)上的。主机内存可以被CPU直接访问,但GPU访问它通常较慢,因为需要通过PCIe总线进行数据传输。这种内存类型适用于需要CPU频繁访问的数据,或者在CPU和GPU之间需要频繁传输数据的场景。
  3. cudaMemoryTypeDevice

    • 这表示内存是分配在设备(GPU)上的。设备内存只能被GPU直接访问,CPU访问它需要通过CUDA的内存复制操作。这种内存类型适用于GPU计算密集型任务,因为数据已经在GPU上,可以减少数据传输的开销。
  4. cudaMemoryTypeManaged

    • 这表示内存是“统一内存”,即由CUDA统一管理的内存。在这种内存类型下,数据可以同时被CPU和GPU访问,而不需要显式的数据复制操作。CUDA运行时会自动处理数据在主机和设备之间的迁移。这种内存类型简化了内存管理,但可能会引入额外的性能开销,因为运行时需要决定何时以及如何迁移数据。

区别总结:

  • cudaMemoryTypeHost 和 cudaMemoryTypeDevice 提供了明确的内存位置,分别对应CPU和GPU,适用于对性能有明确要求的场景。
  • cudaMemoryTypeManaged 提供了更简单的编程模型,但可能会牺牲一些性能,因为数据迁移是自动和隐式的。
  • cudaMemoryTypeUnregistered 通常不用于实际编程,它更多是一个占位符,表示内存类型尚未确定。

2.3 infer_server/src/core/device.cpp修改

/*************************************************************************
* Copyright (C) [2020] by Cambricon, Inc. All rights reserved
*
*  Licensed under the Apache License, Version 2.0 (the "License");
*  you may not use this file except in compliance with the License.
*  You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*************************************************************************/

#include <glog/logging.h>

#include "nvis/infer_server.h"

namespace infer_server {
    cudaMemcpyKind GetMemcpyKind(BufSurfaceMemType src_mem_type, BufSurfaceMemType dst_mem_type) {
        // 确保未注册内存不会被使用
        assert(src_mem_type != BUF_MEMORY_UNREGISTERED);
        assert(dst_mem_type != BUF_MEMORY_UNREGISTERED);

        // 根据源和目标内存类型确定 cudaMemcpyKind
        if (src_mem_type == BUF_MEMORY_HOST && dst_mem_type == BUF_MEMORY_HOST) {
            return cudaMemcpyHostToHost;
        }
        else if (src_mem_type == BUF_MEMORY_HOST && dst_mem_type == BUF_MEMORY_DEVICE) {
            return cudaMemcpyHostToDevice;
        }
        else if (src_mem_type == BUF_MEMORY_DEVICE && dst_mem_type == BUF_MEMORY_HOST) {
            return cudaMemcpyDeviceToHost;
        }
        else if (src_mem_type == BUF_MEMORY_DEVICE && dst_mem_type == BUF_MEMORY_DEVICE) {
            return cudaMemcpyDeviceToDevice;
        }
        else if (src_mem_type == BUF_MEMORY_MANAGED || dst_mem_type == BUF_MEMORY_MANAGED) {
            // 管理内存可以视为主机或设备内存
            return cudaMemcpyDefault;
        }

        // 默认情况下返回 cudaMemcpyDefault
        return cudaMemcpyDefault;
    }

    bool SetCurrentDevice(int device_id) noexcept{
        CUDA_SAFECALL(cudaSetDevice(device_id), "Set device failed", false);
        VLOG(3) << "[InferServer] SetCurrentDevice(): Set device [" << device_id << "] for this thread";
        return true;
    }

    uint32_t TotalDeviceCount() noexcept{
        uint32_t dev_cnt;
        CUDA_SAFECALL(cudaGetDeviceCount(dev_cnt), "Set device failed", 0);
        return dev_cnt;
    }

    bool CheckDevice(int device_id) noexcept{
        uint32_t dev_cnt;
        CUDA_SAFECALL(cudaGetDeviceCountdev_cnt), "Check device failed", false);
        return device_id < static_cast<int>(dev_cnt) && device_id >= 0;
    }

    void* MallocDeviceMem(size_t size) noexcept{
        void *device_ptr{};
        CUDA_SAFECALL(cudaMallocManaged(&device_ptr, size), "Malloc device memory failed", nullptr);
        return device_ptr;
    }

    int FreeDeviceMem(void *p) noexcept{
        CUDA_SAFECALL(cudaFree(p), "Free device memory failed", -1);
        return 0;
    }

    void* AllocHostMem(size_t size) noexcept{
        void *host_ptr{};
        CUDA_SAFECALL(cudaMallocHost(&host_ptr, size), "Malloc host memory failed", nullptr);
        return host_ptr;
    }

    int FreeHostMem(void *p) noexcept{
        CUDA_SAFECALL(cudaFreeHost(p), "Free host memory failed", -1);
    }

    int MemcpyHD(void* dst, BufSurfaceMemType dst_mem_type, void* src, BufSurfaceMemType src_mem_type, size_t size) noexcept{
        cudaMemcpyKind cpy_type = GetMemcpyKind(src_mem_type, dst_mem_type);
        CUDA_SAFECALL(cudaMemcpy(dst, src, size, cpy_type), "Memcpy HD failed", -1);
        return 0;
    }

    bool IsItegratedGPU(int device_id) {
        static int s_integrated = [device_id]() {
            cudaDeviceProp prop;
            CUDA_SAFECALL(cudaGetDeviceProperties(&prop, device_id));
        };
        return s_integrated == 1;
    }

    int GetCurrentDevice(int& device_id) noexcept{
        CUDA_SAFECALL(cudaGetDevice(&device_id));
        return 0;
    }

}  // namespace infer_server

3 图像缩放、裁剪、色域转换等代码编写----利用CV-CUDA

3.1 nvstream中图像处理代码流程框架

和前面一样,先大体看一下nvstream中图像处理的代码流程框架。

3.1.1 类的层次关系

class TransformService
    class ITransformer 只是个基类,被用来继承的,
    class TransformerAcl : public ITransformer 然后就是硬件处理的了
        AclLiteImageProc

现在应该是直接把TransformerAcl 和 AclLiteImageProc合成一个英伟达的类。

3.1.2 各个类的初始化函数调用层次关系

在视频解码类的create函数里面,或者在算法的Preproc都会有这样一行
if (TransformCreate(&transformer_, &config) != 0)这个transformer_ 是视频解码类或者算法预处理类的一个成员。
    这个create函数是这样的,
    int TransformCreate(void **transformer, TransformConfigParams *params) {
        return infer_server::TransformService::Instance().Create(transformer, params);
    }
    然后TransformService类的create函数里面有         
        ITransformer *transformer_ = CreateTransformer(); CreateTransformer里面就是new TransformerAcl也就是具体的硬件处理类了    
        transformer_->Create(params)
        *transformer = transformer_;回传给解码的那个类或者算法预处理类,

3.1.3 各个类的transform函数调用层次关系

具体硬件解码处理类的OnFrame函数里面会有一个
Transform(transformer_, &transform_src, surf, &trans_params)
    应该是调用了这个
    int Transform(void *transformer, BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        return infer_server::TransformService::Instance().Transform(transformer, src, dst, transform_params);
    }
        然后到了这里
        int Transform(void *transformer, BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
            if (!dst || !src || !transform_params) {
                LOG(ERROR) << "[InferServer] [TransformService] Transform(): src, dst BufSurface or parameters pointer is invalid";
                return -1;
            }

            ITransformer *transformer_ = static_cast<ITransformer *>(transformer); 那个具体的硬件处理类就是继承的ITransformer 
            return transformer_->Transform(src, dst, transform_params);这就到了具体硬件transform类的函数了,
        }

3.2 编写图像缩放、裁剪、色域转换等代码

3.2.1 infer_server/src/nv/transform_impl_nv.hpp


#ifndef TRANSFORM_IMPL_NV_HPP_
#define TRANSFORM_IMPL_NV_HPP_

#include <algorithm>
#include <cstring>  // for memset
#include <atomic>

#include "../transform_impl.hpp"
#include "transform.h"

namespace infer_server {

    class TransformerNV : public ITransformer {
    public:
        TransformerNV() {

        }
        ~TransformerNV() = default;

        int Create(TransformConfigParams *params) override;
        int Destroy() override;
        int Transform(BufSurface *src, BufSurface *dst, TransformParams *transform_params) override;

    private:
        int DoNVTransform(BufSurface *src, BufSurface *dst, TransformParams *transform_params);
        int NVResize(BufSurface *src, BufSurface *dst, TransformParams *transform_params);
        int NVCrop(BufSurface *src, BufSurface *dst, TransformParams *transform_params);
        int NVCropResize(BufSurface *src, BufSurface *dst, TransformParams *transform_params);
        int NVCropResizePaste(BufSurface *src, BufSurface *dst, TransformParams *transform_params);
        int NVConvertFormat(BufSurface *src, BufSurface *dst, TransformParams *transform_params);

    private:
        TransformConfigParams create_params_;
        cudaStream_t* cu_stream_{nullptr};
        std::shared_ptr<nvcv::ITensor> crop_tensor_;
        std::shared_ptr<nvcv::ITensor> resized_tensor_;
        std::shared_ptr<nvcv::ITensor> cvtcolor_tensor_;
        std::shared_ptr<nvcv::ITensor> copymakeborder_tensor_;

        std::shared_ptr<cvcuda::CustomCrop> crop_op_;    
        std::shared_ptr<cvcuda::Resize> resize_op_;
        std::shared_ptr<cvcuda::CvtColor> cvtcolor_op_;
        std::shared_ptr<cvcuda::CopyMakeBorder> copymakeborder_op_;
        

        std::atomic<bool> created_{};
    };

}  // namespace 

#endif  // TRANSFORM_IMPL_MLU370_HPP_

3.2.2 infer_server/src/nv/transform_impl_nv.cpp



#include "transform_impl_nv.hpp"

#include <algorithm>
#include <atomic>
#include <cstring>  // for memset
#include <map>
#include <memory>
#include <string>
#include <vector>

#include "glog/logging.h"

namespace infer_server {
    int TransformerNV::Create(TransformConfigParams *params) {
        create_params_ = *params;
        
        if(nullptr == cu_stream_)
        {
            cuCreateStream(&cu_stream_, create_params_.device_id);
        }
        
        if (!crop_op_){
            crop_op_ = std::make_shared<cvcuda::CustomCrop>();
        }
        
        if (!cvtcolor_op_){
            cvtcolor_op_ = std::make_shared<cvcuda::CvtColor>();
        }

        if (!resize_op_){
            resize_op_ = std::make_shared<cvcuda::Resize>();
        }

        if (!copymakeborder_op_){
            copymakeborder_op_ = std::make_shared<cvcuda::CopyMakeBorder>();
        }

        created_ = true;
        return 0;
    }

    int TransformerNV::Destroy() {
        if (!created_) {
            LOG(WARNING) << "[InferServer] [TransformerNV] Destroy(): Transformer is not created";
            return 0;
        }

        if (cu_stream_ != nullptr) {
            cuDestroyStream(cu_stream_);
            cu_stream_ = nullptr;
        }

        cvtcolor_op_.reset();
        resize_op_.reset();
        crop_op_.reset();
        copymakeborder_op_.reset();

        return 0;
    }

    int TransformerNV::Transform(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        if (!created_) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): transformer is not created";
            return -1;
        }

        if (src->num_filled > dst->batch_size) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): The number of inputs exceeds batch size: "
                << src->num_filled << " v.s. " << dst->batch_size;
            return -1;
        }

        if (src->device_id != dst->device_id || src->device_id != create_params_.device_id) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): The device id of src, dst and transformer is not the same: src device: " << src->device_id
                << " , dst device: " << dst->device_id
                << " , transformer device: " << create_params_.device_id;
            return -1;
        }

        if (src->mem_type != BUF_MEMORY_DVPP) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): The src and dst mem_type must be BUF_MEMORY_DVPP";
            return -1;
        }

        if (src->surface_list[0].data_size == 0) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): Input data size is 0";
            return -1;
        }

        return DoNVTransform(src, dst, transform_params);
    }

    int TransformerNV::DoNVTransform(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        switch (transform_params->transform_flag) {
        case TRANSFORM_RESIZE_SRC:
            return NVResize(src, dst, transform_params);
            break;
        case TRANSFORM_CROP_SRC:
            return NVCrop(src, dst, transform_params);
            break;
        case TRANSFORM_CROP_RESIZE_SRC:
            return NVCropResize(src, dst, transform_params);
            break;
        case TRANSFORM_CROP_RESIZE_PASTE_SRC:
            return NVCropResizePaste(src, dst, transform_params);
            break;
        default:
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): Transform flag not supported currently, flag = " << transform_params->transform_flag;
            return -1;
        }
    }

    int TransformerNV::NVResize(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        if (src->batch_size != 1 || dst->batch_size != 1) {
            LOG(ERROR) << "[InferServer] [TransformerNV] Transform(): NVResize now only support src/dst one image, src batch size = " << src->batch_size <<" , dst batch size = " << dst->batch_size;
            return -1;
        }

        auto& src_surf = src->surface_list[0];

        nvcv::Tensor::Requirements in_reqs = nvcv::Tensor::CalcRequirements(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_BGR8);
        nvcv::TensorDataStridedCuda::Buffer in_buf;
        std::copy(in_reqs.strides, in_reqs.strides + NVCV_TENSOR_MAX_RANK, in_buf.strides);
        in_buf.basePtr = reinterpret_cast<NVCVByte *>(src->data_ptr);

        nvcv::TensorDataStridedCuda in_data(nvcv::TensorShape{in_reqs.shape, in_reqs.rank, in_reqs.layout}, nvcv::DataType{in_reqs.dtype}, in_buf);
        nvcv::TensorWrapData in_tensor(in_data);
    
        if (!resized_tensor_){
            resized_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {dst.width_stride, src_surf.height}, nvcv::FMT_BGR8));
        }

        (*resize_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), in_tensor, *resized_tensor_, NVCV_INTERP_LINEAR);

        auto& dst_surf = dst->surface_list[0];
        auto out_data = resized_tensor_->exportData<nvcv::TensorDataStridedCuda>();

        cudaMemcpyAsync(dst_surf.data_ptr, (const unsigned char *)out_data->basePtr(), dst_surf.data_size, cudaMemcpyDeviceToHost);
        cuStreamSynchronize(cu_stream_);

        resized_tensor_.reset();
        
        return 0;
    }

    int TransformerNV::NVCrop(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        auto& src_surf = src->surface_list[0];
        auto& dst_surf = dst->surface_list[0];

        nvcv::Tensor::Requirements in_reqs = nvcv::Tensor::CalcRequirements(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_BGR8);
        nvcv::TensorDataStridedCuda::Buffer in_buf;
        std::copy(in_reqs.strides, in_reqs.strides + NVCV_TENSOR_MAX_RANK, in_buf.strides);
        in_buf.basePtr = reinterpret_cast<NVCVByte *>(src->data_ptr);

        nvcv::TensorDataStridedCuda in_data(nvcv::TensorShape{in_reqs.shape, in_reqs.rank, in_reqs.layout}, nvcv::DataType{in_reqs.dtype}, in_buf);
        nvcv::TensorWrapData in_tensor(in_data);
    
        if (!crop_tensor_){
            crop_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {dst_surf.width, dst_surf.height}, nvcv::FMT_BGR8));
        }
        
        TransformRect rect = transform_params->src_rect[0];
        rect.left = rect.left >= src_surf.width ? 0 : rect.left;
        rect.top = rect.top >= src_surf.height ? 0 : rect.top;
        rect.width = rect.width <= 0 ? (src_surf.width - rect.left) : rect.width;
        rect.height = rect.height <= 0 ? (src_surf.height - rect.top) : rect.height;
        NVCVRectI crpRect = { rect.left, rect.top, rect.left + rect.width - 1, rect.top + rect.height - 1 };

        (*crop_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), in_tensor, *crop_tensor_, crpRect);


        auto out_data = crop_tensor_->exportData<nvcv::TensorDataStridedCuda>();

        cudaMemcpyAsync(dst_surf.data_ptr, (const unsigned char *)out_data->basePtr(), dst_surf.data_size, cudaMemcpyDeviceToHost);
        cuStreamSynchronize(cu_stream_);

        crop_tensor_.reset();
        
        return 0;
    }

    int TransformerNV::NVCropResize(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {

        auto& src_surf = src->surface_list[0];
        auto& dst_surf = dst->surface_list[0];

        nvcv::Tensor::Requirements in_reqs = nvcv::Tensor::CalcRequirements(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_BGR8);
        nvcv::TensorDataStridedCuda::Buffer in_buf;
        std::copy(in_reqs.strides, in_reqs.strides + NVCV_TENSOR_MAX_RANK, in_buf.strides);
        in_buf.basePtr = reinterpret_cast<NVCVByte *>(src->data_ptr);

        nvcv::TensorDataStridedCuda in_data(nvcv::TensorShape{in_reqs.shape, in_reqs.rank, in_reqs.layout}, nvcv::DataType{in_reqs.dtype}, in_buf);
        nvcv::TensorWrapData in_tensor(in_data);

        
        TransformRect rect = transform_params->src_rect[0];
        rect.left = rect.left >= src_surf.width ? 0 : rect.left;
        rect.top = rect.top >= src_surf.height ? 0 : rect.top;
        rect.width = rect.width <= 0 ? (src_surf.width - rect.left) : rect.width;
        rect.height = rect.height <= 0 ? (src_surf.height - rect.top) : rect.height;
        NVCVRectI crpRect = { rect.left, rect.top, rect.left + rect.width - 1, rect.top + rect.height - 1 };
            
        if (!crop_tensor_){
            crop_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {rect.width, rect.height}, nvcv::FMT_BGR8));
        }

        (*crop_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), in_tensor, *crop_tensor_, crpRect);
        
        if (!resized_tensor_){
            resized_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, { dst_surf.width, dst_surf.height }, nvcv::FMT_BGR8));
        }

        (*resize_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), *crop_tensor_, *resized_tensor_, NVCV_INTERP_LINEAR);

        auto out_data = resized_tensor_->exportData<nvcv::TensorDataStridedCuda>();

        cudaMemcpyAsync(dst_surf.data_ptr, (const unsigned char *)out_data->basePtr(), dst_surf.data_size, cudaMemcpyDeviceToHost);
        cuStreamSynchronize(cu_stream_);

        crop_tensor_.reset();
        resized_tensor_.reset();

        return 0;
    }

    int TransformerNV::NVCropResizePaste(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {
        auto& src_surf = src->surface_list[0];
        auto& dst_surf = dst->surface_list[0];

        nvcv::Tensor::Requirements in_reqs = nvcv::Tensor::CalcRequirements(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_BGR8);
        nvcv::TensorDataStridedCuda::Buffer in_buf;
        std::copy(in_reqs.strides, in_reqs.strides + NVCV_TENSOR_MAX_RANK, in_buf.strides);
        in_buf.basePtr = reinterpret_cast<NVCVByte *>(src->data_ptr);

        nvcv::TensorDataStridedCuda in_data(nvcv::TensorShape{in_reqs.shape, in_reqs.rank, in_reqs.layout}, nvcv::DataType{in_reqs.dtype}, in_buf);
        nvcv::TensorWrapData in_tensor(in_data);

        
        TransformRect rect = transform_params->src_rect[0];
        rect.left = rect.left >= src_surf.width ? 0 : rect.left;
        rect.top = rect.top >= src_surf.height ? 0 : rect.top;
        rect.width = rect.width <= 0 ? (src_surf.width - rect.left) : rect.width;
        rect.height = rect.height <= 0 ? (src_surf.height - rect.top) : rect.height;
        NVCVRectI crop_src_rect = { rect.left, rect.top, rect.left + rect.width - 1, rect.top + rect.height - 1 };

        TransformRect dst_rect = transform_params->dst_rect[0];
        dst_rect.left = dst_rect.left >= src_surf.width ? 0 : dst_rect.left;
        dst_rect.top = dst_rect.top >= src_surf.height ? 0 : dst_rect.top;
        dst_rect.width = dst_rect.width <= 0 ? (src_surf.width - dst_rect.left) : dst_rect.width;
        dst_rect.height = dst_rect.height <= 0 ? (src_surf.height - dst_rect.top) : dst_rect.height;
        NVCVRectI paste_dst_rect(dst_rect.left, dst_rect.top, dst_rect.left + dst_rect.width - 1, dst_rect.top + dst_rect.height - 1);
            
        if (!crop_tensor_){
            crop_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {rect.width, rect.height}, nvcv::FMT_BGR8));
        }

        (*crop_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), in_tensor, *crop_tensor_, crop_src_rect);
        
        if (!resized_tensor_){
            resized_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {  dst_rect.width,  dst_rect.height }, nvcv::FMT_BGR8));
        }

        (*resize_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), *crop_tensor_, *resized_tensor_, NVCV_INTERP_LINEAR);


        if (!copymakeborder_tensor_){
            copymakeborder_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, { dst_surf.width, dst_surf.height }, nvcv::FMT_BGR8));
        }

       (*copymakeborder_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), *resized_tensor_, *copymakeborder_tensor_, dst_rect.top, dst_rect.left, NVCV_BORDER_CONSTANT, 0);

        auto out_data = copymakeborder_tensor_->exportData<nvcv::TensorDataStridedCuda>();

        cudaMemcpyAsync(dst_surf.data_ptr, (const unsigned char *)out_data->basePtr(), dst_surf.data_size, cudaMemcpyDeviceToHost);
        cuStreamSynchronize(cu_stream_);

        crop_tensor_.reset();
        resized_tensor_.reset();
        copymakeborder_tensor_.reset();

        return 0;
    }

    int TransformerNV::NVConvertFormat(BufSurface *src, BufSurface *dst, TransformParams *transform_params) {

        auto& src_surf = src->surface_list[0];

        nvcv::Tensor::Requirements in_reqs = nvcv::Tensor::CalcRequirements(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_NV12);
        nvcv::TensorDataStridedCuda::Buffer in_buf;
        std::copy(in_reqs.strides, in_reqs.strides + NVCV_TENSOR_MAX_RANK, in_buf.strides);
        in_buf.basePtr = reinterpret_cast<NVCVByte *>(src->data_ptr);

        nvcv::TensorDataStridedCuda in_data(nvcv::TensorShape{in_reqs.shape, in_reqs.rank, in_reqs.layout}, nvcv::DataType{in_reqs.dtype}, in_buf);
        nvcv::TensorWrapData in_tensor(in_data);
    
        if (!cvtcolor_tensor_){
            cvtcolor_tensor_ = std::shared_ptr<nvcv::Tensor>(new nvcv::Tensor(1, {src_surf.width_stride, src_surf.height}, nvcv::FMT_BGR8));
        }

        (*cvtcolor_op_)(reinterpret_cast<cudaStream_t>(cu_stream_), in_tensor, *cvtcolor_tensor_, NVCV_COLOR_YUV2BGR_NV12);

        auto& dst_surf = dst->surface_list[0];
        auto out_data = resized_tensor_->exportData<nvcv::TensorDataStridedCuda>();

        cudaMemcpyAsync(dst_surf.data_ptr, (const unsigned char *)out_data->basePtr(), dst_surf.data_size, cudaMemcpyDeviceToHost);
        cuStreamSynchronize(cu_stream_);

        cvtcolor_tensor_.reset();
        return 0;
    }


}  // namespace 

4 算法推理相关代码修改

4.1 ./infer_server/src/model/model.h

/*************************************************************************
 * Copyright (C) [2020] by Cambricon, Inc. All rights reserved
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *************************************************************************/

#ifndef INFER_SERVER_MODEL_H_
#define INFER_SERVER_MODEL_H_

#include <glog/logging.h>
#include <algorithm>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>

#include "nvis/infer_server.h"
#include "nvis/processor.h"
#include "nvis/shape.h"

namespace trt {
#include "trteng_exp/export_funtions.h"
}

namespace infer_server {
    using TEngine = std::unique_ptr<trt::trtnet_t>;

    class Model;
    class ModelRunner {
    public:
        explicit ModelRunner(int device_id) : device_id_(device_id) {}
        ModelRunner(const ModelRunner& other) = delete;
        ModelRunner& operator=(const ModelRunner& other) = delete;
        ModelRunner(ModelRunner&& other) = default;
        ModelRunner& operator=(ModelRunner&& other) = default;
        ~ModelRunner() = default;

        bool Init(TEngine engine) noexcept;
        Status Run(ModelIO* input, ModelIO* output) noexcept;  // NOLINT

        void SetInputNum(uint32_t  i_num) noexcept{ input_num_ = i_num; }
        void SetOutputNum(uint32_t  o_num) noexcept{ output_num_ = o_num; }

        void SetInputShapes(std::vector<Shape> const& i_shapes) noexcept{ i_shapes_ = i_shapes; }
        void SetOutputShapes(std::vector<Shape> const& o_shapes) noexcept{ o_shapes_ = o_shapes; }

        void SetInputLayouts(std::vector<DataLayout> const& i_layouts) noexcept{ i_layouts_ = i_layouts; }
        void SetOutputLayouts(std::vector<DataLayout> const& o_layouts) noexcept{ o_layouts_ = o_layouts; }

    private:
        TEngine engine_{};

        uint32_t input_num_{};
        uint32_t output_num_{};

        std::vector<Shape> i_shapes_;
        std::vector<Shape> o_shapes_;
        std::vector<DataLayout> i_layouts_;
        std::vector<DataLayout> o_layouts_;

        int device_id_{};
    };  // class RuntimeContext

    class Model : public ModelInfo {
    public:
        Model() = default;
        bool Init(const std::string& model_path) noexcept;
        ~Model();

        bool HasInit() const noexcept{ return has_init_; }

            const Shape& InputShape(int index) const noexcept override{
            CHECK(index < i_num_ || index >= 0) << "[InferServer] [Model] Input shape index overflow";
            return input_shapes_[index];
        }
            const Shape& OutputShape(int index) const noexcept override{
            CHECK(index < o_num_ || index >= 0) << "[InferServer] [Model] Output shape index overflow";
            return output_shapes_[index];
        }
            const DataLayout& InputLayout(int index) const noexcept override{
            CHECK(index < i_num_ || index >= 0) << "[InferServer] [Model] Input shape index overflow";
            return i_layouts_[index];
        }
            const DataLayout& OutputLayout(int index) const noexcept override{
            CHECK(index < o_num_ || index >= 0) << "[InferServer] [Model] Input shape index overflow";
            return o_layouts_[index];
        }
        uint32_t InputNum() const noexcept override{ return i_num_; }
        uint32_t OutputNum() const noexcept override{ return o_num_; }
        uint32_t BatchSize() const noexcept override{ return model_batch_size_; }

        bool FixedOutputShape() noexcept override{ return FixedShape(output_shapes_); }

        std::shared_ptr<ModelRunner> GetRunner(int device_id) noexcept{
            trt::ErrInfo ei{};
            trt::trtnet_t* net = trt::load_net_from_file(model_file_.data(), &ei);
            CHECK(!net) << "trt::load_net_from_file failed: model file: " << te2fullpath << ", error: " << ei.errmsg;
            TEngine engine = TEngine(net, [](trt::trtnet_t* n) { trt::release_net(n); });

            auto runner = std::make_shared<ModelRunner>(device_id);
            runner->SetInputNum(i_num_);
            runner->SetOutputNum(o_num_);
            runner->SetInputShapes(input_shapes_);
            runner->SetOutputShapes(output_shapes_);
            runner->SetInputLayouts(i_layouts_);
            runner->SetOutputLayouts(o_layouts_);     

            if (!runner->Init(std::move(engine))) return nullptr;
            return runner;
        }

        std::string GetKey() const noexcept override{ return model_file_; }

    private:
        bool GetModelInfo(trt::trtnet_t* net) noexcept;
        bool FixedShape(const std::vector<Shape>& shapes) noexcept{
            for (auto &shape : shapes) {
                auto vectorized_shape = shape.Vectorize();
                if (!std::all_of(vectorized_shape.begin(), vectorized_shape.end(), [](int64_t v) { return v > 0; })) {
                    return false;
                }
            }
            return !shapes.empty();
        }

        Model(const Model&) = delete;
        Model& operator=(const Model&) = delete;

    private:
        std::string model_file_;

        std::vector<DataLayout> i_layouts_, o_layouts_;
        std::vector<Shape> input_shapes_, output_shapes_;
        int i_num_{}, o_num_{};
        uint32_t model_batch_size_{ 1 };
        bool has_init_{ false };
    };  // class Model

    // use environment CNIS_MODEL_CACHE_LIMIT to control cache limit
    class ModelManager {
    public:
        static ModelManager* Instance() noexcept;

        void SetModelDir(const std::string& model_dir) noexcept{ model_dir_ = model_dir; }

        ModelPtr Load(const std::string& model_file) noexcept;
        ModelPtr Load(void* mem_ptr, size_t size) noexcept;
        bool Unload(ModelPtr model) noexcept;

        void ClearCache() noexcept;

        int CacheSize() noexcept;

        std::shared_ptr<Model> GetModel(const std::string& name) noexcept;

    private:
        std::string DownloadModel(const std::string& url) noexcept;
        void CheckAndCleanCache() noexcept;

        std::string model_dir_{ "." };

        static std::unordered_map<std::string, std::shared_ptr<Model>> model_cache_;
        static std::mutex model_cache_mutex_;
    };  // class ModelManager

}  // namespace infer_server

#endif  // INFER_SERVER_MODEL_H_

4.2 ./infer_server/src/model/model.cpp

/*************************************************************************
 * Copyright (C) [2020] by Cambricon, Inc. All rights reserved
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *************************************************************************/

#include "model.h"

#include <glog/logging.h>
#include <algorithm>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "core/data_type.h"
#include "common/utils.hpp"

using std::string;
using std::vector;

namespace infer_server {

    bool ModelRunner::Init(TEngine engine) noexcept{
        if (engine == nullptr) return false;
        engine_ = std::move(engine);
        return true;
    }

        Status ModelRunner::Run(ModelIO* in, ModelIO* out) noexcept{  // NOLINT
        auto& input = in->surfs;
        auto& output = out->surfs;
        CHECK_EQ(input_num_, input.size()) << "[InferServer] [ModelRunner] Input number is mismatched";

        VLOG(5) << "[InferServer] [ModelRunner] Process inference once, input num: " << input_num_ << " output num: "
            << output_num_;

        std::vector<trt::NetInoutLayerData> inputData(input_num_);
        std::vector<trt::NetInoutLayerData> outputData(output_num_);

        for (uint32_t i_idx = 0; i_idx < input_num_; ++i_idx) {
            CHECK_EQ(input_num_, input.size()) << "[InferServer] [ModelRunner] Input number is mismatched";

            inputData[i].data = input[i_idx]->GetData(0);
            inputData[i].size = input[i_idx]->GetSize(0);
            inputData[i].layer_idx = i_idx;
        }

        for (uint32_t o_idx = 0; o_idx < output_num_; ++o_idx) {
            CHECK_EQ(output_num_, output.size()) << "[InferServer] [ModelRunner] Output number is mismatched";

            outputData[i].data = input[o_idx]->GetData(0);
            outputData[i].size = input[o_idx]->GetSize(0);
            outputData[i].layer_idx = o_idx;
        }

        uint32_t batchsize = input[0]->GetNumFilled();
        trt::ErrInfo ei{};
        _SAFECALL(trt::net_do_inference(engine_.get(), batchsize, inputData.data(), inputData.size(), outputData.data(), outputData.size(), &ei)
                  , "[InferServer] [ModelRunner] Infer failed.", Status::ERROR_BACKEND);

        return Status::SUCCESS;
    }

        bool Model::Init(const string& model_file) noexcept{
        model_file_ = model_file;

        trt::ErrInfo ei{};
        trt::trtnet_t* net = trt::load_net_from_file(model_file_.data(), &ei);
        CHECK(!net) << "trt::load_net_from_file failed: model file: " << te2fullpath << ", error: " << ei.errmsg;

        has_init_ = GetModelInfo(model);

        VLOG(1) << "[InferServer] [Model] (success) Load model from file: " << model_file_;

        trt::release_net(net);

        return has_init_;
    }

        bool Model::GetModelInfo(trt::trtnet_t* net) noexcept{
        VLOG(1) << "[InferServer] [Model] (success) Load model from graph file: " << model_file_;

        int model_batch_size_ = trt::net_max_batch_size(net);

        // get IO messages
        // get io number and data size
        i_num_ = trt::net_num_inputs(net);
        o_num_ = trt::net_num_outputs(net);

        // get input info
        for (int i = 0; i < ninp; i++) {
            trt::LayerDims ldim{};
            trt::net_input_layer_dims(net, i, &ldim);
            input_shapes_.emplace_back(std::move(Shape({ std::max(ldim.n, model_batch_size_), ldim.c, ldim.h, ldim.w })));

            DataLayout layout;
            layout.dtype = DataType::FLOAT;
            layout.order = DimOrder::NCHW;
            i_layouts_.emplace_back(std::move(layout));
        }

        // get output info
        int noup = net_num_outputs(net);
        runner->SetOutputNum(noup);
        for (int i = 0; i < noup; i++) {
            trt::LayerDims ldim{};
            trt::net_output_layer_dims(net, i, &ldim);
            output_shapes_.emplace_back(std::move(Shape({ std::max(ldim.n, model_batch_size_), ldim.c, ldim.h, ldim.w })));

            DataLayout layout;
            layout.dtype = DataType::FLOAT;
            layout.order = DimOrder::NCHW;
            o_layouts_.emplace_back(std::move(layout));
        }

        VLOG(1) << "[InferServer] [Model] Model Info: input number = " << i_num_ << ";\toutput number = " << o_num_;
        VLOG(1) << "[InferServer] [Model]             batch size = " << model_batch_size_;
        for (int i = 0; i < i_num_; ++i) {
            VLOG(1) << "[InferServer] [Model] ----- input index [" << i;
            VLOG(1) << "[InferServer] [Model]       data type " << detail::DataTypeStr(i_layouts_[i].dtype);
            VLOG(1) << "[InferServer] [Model]       dim order " << detail::DimOrderStr(i_layouts_[i].order);
            VLOG(1) << "[InferServer] [Model]       shape " << input_shapes_[i];
        }
        for (int i = 0; i < o_num_; ++i) {
            VLOG(1) << "[InferServer] [Model] ----- output index [" << i;
            VLOG(1) << "[InferServer] [Model]       data type " << detail::DataTypeStr(o_layouts_[i].dtype);
            VLOG(1) << "[InferServer] [Model]       dim order " << detail::DimOrderStr(o_layouts_[i].order);
            VLOG(1) << "[InferServer] [Model]       shape " << output_shapes_[i];
        }
        return true;
    }

        Model::~Model() {
        VLOG(1) << "[InferServer] [Model] Unload model: " << model_file_;
    }
}  // namespace infer_server

5 其他代码修改

其他的还有很多零碎代码,比如一些命名空间的名字,还有一些其他名称,还有很多文件里面调用的一些函数的名字,太乱了,不写到博客里面了。

参考文献:

在NVIDIA Jetson AGX Orin中使用jetson-ffmpeg调用硬件编解码加速处理-CSDN博客

NVIDIA Jetson AGX Orin源码编译安装CV-CUDA-CSDN博客

GitHub - Cambricon/CNStream: CNStream is a streaming framework for building Cambricon machine learning pipelines http://forum.cambricon.com https://gitee.com/SolutionSDK/CNStream

easydk/samples/simple_demo/common/video_decoder.cpp at master · Cambricon/easydk · GitHub

aclStream流处理多路并发Pipeline框架中 视频解码 代码调用流程整理、类的层次关系整理、回调函数赋值和调用流程整理-CSDN博客

aclStream流处理多路并发Pipeline框架中VEncode Module代码调用流程整理、类的层次关系整理、回调函数赋值和调用流程整理-CSDN博客

FFmpeg/doc/examples at master · FFmpeg/FFmpeg · GitHub

GitHub - CVCUDA/CV-CUDA: CV-CUDA™ is an open-source, GPU accelerated library for cloud-scale image processing and computer vision.

如何使用FFmpeg的解码器—FFmpeg API教程 · FFmpeg原理

C++ API — CV-CUDA Beta documentation (cvcuda.github.io)

CV-CUDA/tests/cvcuda/system at main · CVCUDA/CV-CUDA · GitHub

Resize — CV-CUDA Beta documentation

CUDA Runtime API :: CUDA Toolkit Documentation

CUDA Toolkit Documentation 12.6 Update 1


http://www.kler.cn/a/293236.html

相关文章:

  • DAY112代码审计PHP开发框架POP链利用Yii反序列化POP利用链
  • Android Studio更新成2024.1.2版本后旧项目Gradle配置问题
  • 力扣104 : 二叉树最大深度
  • 2411C++,C++26反射示例
  • 九州未来再度入选2024边缘计算TOP100
  • ArcGIS Pro属性表乱码与字段名3个汉字解决方案大总结
  • Python爬虫01
  • 代码随想录:343. 整数拆分
  • ECMAScript与JavaScript的区别:深入解析与代码示例
  • MP条件构造器之常用功能详解(select、set)
  • MySQL——事务与存储过程(三)存储过程的使用(4)删除存储过程
  • 三星的新款笔记本电脑AI性能提升一倍
  • vite创建的vue项目怎么使用jsx来实现elementPlus表格表尾的合计有多行大的方法
  • 【全网最全】2024年数学建模国赛D题39页成品论文+matlab代码+结果等(后续会更新)
  • 身份验证技术应用10大关键趋势
  • 图论题总结
  • 基于JavaWeb开发的Java+Springboot+Vue+elememt美食论坛平台设计实现
  • 安卓逆向(之)真机root(红米手机)
  • 社群空间站付费入群系统易支付版全套搭建教程
  • 【嵌入式学习笔记】---- 通信基础
  • 关于蓝屏查看日志分析原因
  • C_13_FILE
  • 【Spring】Spring MVC 入门(2)
  • css之雪碧图(精灵图)
  • Oracle手动误删物理上的数据文件解决办法
  • 软件测试学习笔记丨Pytest+Allure测试计算器