当前位置: 首页 > article >正文

【AI学习】聊两句深度学习的目标函数

在阅读《动手学深度学习》一书中,看到这样一段话:
“导数的计算,这是⼏乎所有深度学习优化算法的关键步骤。
在深度学习中,我们通常选择对于模型参数可微的损失函数。简⽽⾔之,对于每个参数,如果我们把这个参数增加或减少⼀个⽆穷⼩的量,我们可以知道损失会以多快的速度增加或减少。”

前面的文章也提到:深度学习回答了什么样的神经网络可以训练出智能,包括多层神经网络和卷积神经网络,也回答了训练(学习)方法问题,包括受限玻尔兹曼机模型、反向传播算法、自编码模型等。

反向传播算法,也就是反向导数传播,通过计算损失函数的损失,利用损失函数对于模型参数的可微性,将损失调整转换为模型参数的导数传播。这差不多是深度学习关键方法。由此也让深度学习模型成为函数的万能逼近器。

那如何目标函数不可微,怎么办?一种就是重参数化,类似VAE论文中采用方法。另一种就是采用强化学习,类似RLHF的方法。


http://www.kler.cn/a/293443.html

相关文章:

  • UDP协议和TCP协议之间有什么具体区别?
  • 论文解析:边缘计算网络中资源共享的分布式协议(2区)
  • Springboot 启动端口占用如何解决
  • ML 系列: 第 23 节 — 离散概率分布 (多项式分布)
  • 【2024最新】基于springboot+vue的闲一品交易平台lw+ppt
  • 使用electron-egg把vue项目在linux Ubuntu环境下打包并安装运行
  • 计算机网络27——Linux1
  • 黑马JavaWeb开发笔记14——Tomcat(介绍、安装与卸载、启动与关闭)、入门程序解析(起步依赖、SpringBoot父工程、内嵌Tomcat)
  • EmguCV学习笔记 VB.Net 10.2 人脸识别 FaceRecgnizer类
  • 基于C++实现一个房贷计算小程序(含代码)
  • C++---由优先级队列认识仿函数
  • 《OpenCV计算机视觉》—— 图像形态学(腐蚀、膨胀等)
  • OpenGL GLFW OIT 实现
  • javaEE-多线程(3)
  • 亿佰特-NT1/NT1-B串口转RJ45以太网模块
  • python 实现newton raphson牛顿-拉夫森算法
  • 在Go语言中,不同类型之间转换的一些主要方法:
  • [数据集][目标检测]灭火器检测数据集VOC+YOLO格式3255张1类别
  • Java设计模式【备忘录模式】-行为型
  • 鸿蒙系统之ArkTs布局组件
  • Ansible在CentOS下批量部署Nginx到Kubernetes集群
  • 认识meson 的使用
  • 卷积神经网络(一)
  • 大端模式和小端模式
  • linux安装composer
  • 关于Vscode的vscode-cpptools中的icph占用c盘内存过大问题