当前位置: 首页 > article >正文

HalconDotNet中的图像特征与提取详解

文章目录

  • 简介
  • 一、边缘特征提取
  • 二、角点特征提取
  • 三、区域特征提取
  • 四、纹理特征提取
  • 五、形状特征提取


简介

  图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。

一、边缘特征提取

  边缘特征提取是图像处理中最基本的特征提取方法之一,通过检测图像中的边缘来提取物体的轮廓信息。HalconDotNet提供了多种边缘检测算子,如Sobel、Canny等。

详细说明

  边缘特征提取通过检测图像中灰度变化明显的区域来提取物体的轮廓信息。边缘特征通常用于物体识别、形状分析等任务。HalconDotNet中的边缘检测算子可以有效地提取图像中的边缘信息,并生成边缘图像。

C#示例代码

using HalconDotNet;

class Program
{
    static void Main(string[] args)
    {
        // 初始化Halcon
        HOperatorSet.SetSystem("width", 512);
        HOperatorSet.SetSystem("height", 512);

        // 读取图像
        HObject image;
        HOperatorSet.ReadImage(out image, "printer_chip/printer_chip_01");

        // Sobel边缘检测
        HObject edges;
        HOperatorSet.SobelAmp(image, out edges, "sum_abs", 3);

        // 创建窗口并显示图像
        HWindow window = new HWindow(0, 0, 512, 512, 0, "visible", "");
        window.DispObj(edges);

        // 等待用户输入
        HOperatorSet.WaitSeconds(10);

        // 释放资源
        image.Dispose();
        edges.Dispose();
        window.Dispose();
    }
}

二、角点特征提取

  角点特征提取是一种用于检测图像中角点的方法,角点是图像中灰度变化剧烈的点,通常对应于物体的拐角或边缘交叉点。HalconDotNet提供了Harris角点检测算子。

详细说明

  角点特征提取通过检测图像中灰度变化剧烈的点来提取物体的角点信息。角点特征通常用于图像匹配、目标跟踪等任务。HalconDotNet中的Harris角点检测算子可以有效地提取图像中的角点信息,并生成角点图像。

C#示例代码

using HalconDotNet;

class Program
{
    static void Main(string[] args)
    {
        // 初始化Halcon
        HOperatorSet.SetSystem("width", 512);
        HOperatorSet.SetSystem("height", 512);

        // 读取图像
        HObject image;
        HOperatorSet.ReadImage(out image, "printer_chip/printer_chip_01");

        // Harris角点检测
        HObject corners;
        HOperatorSet.CornerHarris(image, out corners, 2, 3, 0.04, "light");

        // 创建窗口并显示图像
        HWindow window = new HWindow(0, 0, 512, 512, 0, "visible", "");
        window.DispObj(corners);

        // 等待用户输入
        HOperatorSet.WaitSeconds(10);

        // 释放资源
        image.Dispose();
        corners.Dispose();
        window.Dispose();
    }
}

三、区域特征提取

  区域特征提取是一种用于提取图像中区域特征的方法,区域特征包括区域的面积、周长、重心等。HalconDotNet提供了多种区域特征提取算子。

详细说明

  区域特征提取通过分析图像中的连通区域来提取区域的特征信息。区域特征通常用于物体识别、形状分析等任务。HalconDotNet中的区域特征提取算子可以有效地提取图像中的区域特征,并生成特征向量。

C#示例代码

using HalconDotNet;

class Program
{
    static void Main(string[] args)
    {
        // 初始化Halcon
        HOperatorSet.SetSystem("width", 512);
        HOperatorSet.SetSystem("height", 512);

        // 读取图像
        HObject image;
        HOperatorSet.ReadImage(out image, "printer_chip/printer_chip_01");

        // 图像二值化
        HObject binaryImage;
        HOperatorSet.Threshold(image, out binaryImage, 128, 255);

        // 提取连通区域
        HObject connectedRegions;
        HOperatorSet.Connection(binaryImage, out connectedRegions);

        // 计算区域特征
        HTuple area, row, column;
        HOperatorSet.AreaCenter(connectedRegions, out area, out row, out column);

        // 显示区域特征
        Console.WriteLine($"区域面积: {area.D}");
        Console.WriteLine($"重心: ({row.D}, {column.D})");

        // 创建窗口并显示图像
        HWindow window = new HWindow(0, 0, 512, 512, 0, "visible", "");
        window.DispObj(connectedRegions);

        // 等待用户输入
        HOperatorSet.WaitSeconds(10);

        // 释放资源
        image.Dispose();
        binaryImage.Dispose();
        connectedRegions.Dispose();
        window.Dispose();
    }
}

四、纹理特征提取

  纹理特征提取是一种用于提取图像中纹理特征的方法,纹理特征通常用于描述图像的局部模式和结构。HalconDotNet提供了多种纹理特征提取算子,如灰度共生矩阵(GLCM)。

详细说明

  纹理特征提取通过分析图像中的灰度分布和局部模式来提取纹理特征。纹理特征通常用于图像分类、目标识别等任务。HalconDotNet中的纹理特征提取算子可以有效地提取图像中的纹理特征,并生成特征向量。

C#示例代码

using HalconDotNet;

class Program
{
    static void Main(string[] args)
    {
        // 初始化Halcon
        HOperatorSet.SetSystem("width", 512);
        HOperatorSet.SetSystem("height", 512);

        // 读取图像
        HObject image;
        HOperatorSet.ReadImage(out image, "printer_chip/printer_chip_01");

        // 图像灰度化
        HObject grayImage;
        HOperatorSet.Rgb1ToGray(image, out grayImage);

        // 计算灰度共生矩阵
        HObject glcm;
        HOperatorSet.GenImageSurfaceFirstOrder(grayImage, out glcm, "mean", "x", "y");

        // 提取纹理特征
        HTuple energy, contrast, homogeneity, entropy;
        HOperatorSet.TextureLaws(grayImage, out energy, "energy", 2, 5);
        HOperatorSet.TextureLaws(grayImage, out contrast, "contrast", 2, 5);
        HOperatorSet.TextureLaws(grayImage, out homogeneity, "homogeneity", 2, 5);
        HOperatorSet.TextureLaws(grayImage, out entropy, "entropy", 2, 5);

        // 显示纹理特征
        Console.WriteLine($"能量: {energy.D}");
        Console.WriteLine($"对比度: {contrast.D}");
        Console.WriteLine($"均匀性: {homogeneity.D}");
        Console.WriteLine($"熵: {entropy.D}");

        // 创建窗口并显示图像
        HWindow window = new HWindow(0, 0, 512, 512, 0, "visible", "");
        window.DispObj(grayImage);

        // 等待用户输入
        HOperatorSet.WaitSeconds(10);

        // 释放资源
        image.Dispose();
        grayImage.Dispose();
        glcm.Dispose();
        window.Dispose();
    }
}

五、形状特征提取

  形状特征提取是一种用于提取图像中形状特征的方法,形状特征包括物体的面积、周长、形状因子等。HalconDotNet提供了多种形状特征提取算子。

详细说明

  形状特征提取通过分析图像中的连通区域来提取形状特征。形状特征通常用于物体识别、形状分析等任务。HalconDotNet中的形状特征提取算子可以有效地提取图像中的形状特征,并生成特征向量。

C#示例代码

using HalconDotNet;

class Program
{
    static void Main(string[] args)
    {
        // 初始化Halcon
        HOperatorSet.SetSystem("width", 512);
        HOperatorSet.SetSystem("height", 512);

        // 读取图像
        HObject image;
        HOperatorSet.ReadImage(out image, "printer_chip/printer_chip_01");

        // 图像二值化
        HObject binaryImage;
        HOperatorSet.Threshold(image, out binaryImage, 128, 255);

        // 提取连通区域
        HObject connectedRegions;
        HOperatorSet.Connection(binaryImage, out connectedRegions);

        // 计算形状特征
        HTuple area, row, column, roundness, compactness;
        HOperatorSet.AreaCenter(connectedRegions, out area, out row, out column);
        HOperatorSet.Roundness(connectedRegions, out roundness, out compactness);

        // 显示形状特征
        Console.WriteLine($"区域面积: {area.D}");
        Console.WriteLine($"重心: ({row.D}, {column.D})");
        Console.WriteLine($"圆度: {roundness.D}");
        Console.WriteLine($"紧密度: {compactness.D}");

        // 创建窗口并显示图像
        HWindow window = new HWindow(0, 0, 512, 512, 0, "visible", "");
        window.DispObj(connectedRegions);

        // 等待用户输入
        HOperatorSet.WaitSeconds(10);

        // 释放资源
        image.Dispose();
        binaryImage.Dispose();
        connectedRegions.Dispose();
        window.Dispose();
    }
}

http://www.kler.cn/a/294443.html

相关文章:

  • git tag
  • 东胜物流软件 AttributeAdapter.aspx SQL 注入漏洞复现
  • 自然语言处理——Hugging Face 详解
  • jsp+sevlet+mysql实现用户登陆和增删改查功能
  • windows C#-异常处理
  • Rust项目结构
  • MATLAB算法实战应用案例精讲-【人工智能】数据元(概念篇)
  • 力扣 739. 每日温度【经典单调栈题目】
  • PyQt-Server服务器
  • 构建现代前端应用的利器:深入解析Webpack与Vite的差异与优势
  • 电脑WLan无线网连上没网络的问题解决方法
  • iOS剪贴板同步到Windows剪贴板(无需安装软件的方案)
  • vue2结合element-ui使用tsx格式实现formily自定义组件
  • 匹配电子邮件地址的正则表达式
  • 人生苦短我用Python Excel文件基本操作
  • 【60天备战软考高级系统架构设计师——第九天:面向对象设计原则】
  • [SUCTF 2018]annonymous1
  • 移动UI:成就勋章页面该如何设计,用例子说明。
  • 大数据决策分析平台建设方案(56页PPT)
  • SpringBoot2:请求处理原理分析-RESTFUL风格接口
  • 交换机自动化备份配置(H3C_无人值守)
  • 前端小白操作指南:如何删除项目中 pre-commit 的提交限制?
  • 【机器人工具箱Robotics Toolbox开发笔记(十五)】六自由度机器人笛卡尔空间轨迹规划仿真实例
  • 过去十年中,深度学习领域经历了许多重要的算法创新和突破。以下是一些关键的深度学习算法,按照时间顺序排列:
  • ChatGPT在医疗行业的应用前景与挑战探析
  • GraphRAG入门:基本概念、应用场景及学习方法