当前位置: 首页 > article >正文

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

目录

    • 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据)
2.SSA选择最佳的SVM核函数参数c和g;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  参数设置
fun = @getObjValue;    % 目标函数
dim = 2;               % 优化参数个数
lb  = [0.1, 0.1];      % 优化参数目标下限
ub  = [ 800,  800];    % 优化参数目标上限
pop = 20;              % 种群数量
Max_iteration = 30;    % 最大迭代次数   

%%  优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502


http://www.kler.cn/a/302361.html

相关文章:

  • 微信小程序使用上拉加载onReachBottom。页面拖不动。一直无法触发上拉的事件。
  • XML外部实体注入--XML基础
  • 汇编与逆向(二)-汇编基础
  • Text2SQL 智能报表方案介绍
  • 【HarmonyOS NEXT】华为分享-碰一碰开发分享
  • < OS 有关 > 阿里云:轻量应用服务器 的使用 安装 Tailscale 后DNS 出错, 修复并替换 apt 数据源
  • 一月通关华为OD,感谢冯姐
  • Win11+Ubuntu20.04双系统安装教程(避坑版)
  • 科研绘图系列:R语言宏基因组PCoA图(PCoA plot)
  • MySQL——视图(二)视图管理(7)删除视图
  • 第二证券:车网互动商用化发展可期 原油供需拐点或至
  • 大疆无人机用过的两款IMU
  • 使用ShardingSphere实现MySql的分库分表
  • 洛谷 P3065 [USACO12DEC] First! G
  • Gitlab pre-receive hooks适配java p3c-pmd和python pycodestyle
  • Maven 深入指南:构建自动化与项目管理的艺术
  • 推动生态系统架构创新与可持续发展的关键引擎——The Open Group 2024年度大会全解析
  • Java使用Instant时输出的时间比预期少了八个小时
  • Linux数据相关-第3个服务-实时同步sersync
  • 828华为云征文 | 云服务器Flexus X实例:源码安装 Redis 实例测评
  • GPT撰写开题报告教程——课题确定及文献调研
  • ubuntu打包命令
  • SAP B1 单据页面自定义 - 用户界面编辑字段
  • 面试高阶问题:单片机选型策略万字长文详解
  • 关于GPT5训练失败的思考
  • CRM客户关系管理系统开发源码小程序