当前位置: 首页 > article >正文

【Python 千题 —— 算法篇】寻找最长回文子串

请添加图片描述

Python 千题持续更新中 ……
脑图地址 👉:⭐https://twilight-fanyi.gitee.io/mind-map/Python千题.html⭐

字符串处理

题目背景

回文串是指一个字符串从左到右和从右到左读都是一样的。寻找一个字符串中的最长回文子串是许多经典算法问题之一,广泛应用于文本处理、数据分析和计算生物学等领域。

本题的挑战在于如何高效地找出最长的回文子串。在暴力搜索可能导致时间复杂度过高的情况下,掌握优化算法不仅可以提升代码性能,还能加深我们对字符串处理的理解。

题目描述

给定一个字符串 s,请你找出其中最长的回文子串。你可以假设 s 的最大长度为 1000。

输入描述

  • 一个字符串 s,长度在 [1, 1000] 之间,且字符为小写字母。

输出描述

  • 一个字符串,表示输入字符串中最长的回文子串。

示例

示例 ①

输入:

# 调用 longestPalindrome() 函数
print(longestPalindrome("babad"))

输出:

"bab"

解释:回文子串有 “bab” 和 “aba”,长度均为 3,返回其中一个即可。

示例 ②

输入:

print(longestPalindrome("cbbd"))

输出:

"bb"

解释:最长回文子串是 “bb”。


代码讲解与多种解法

解法一:暴力搜索法

最直接的解法是使用暴力搜索法,检查每一个子串是否为回文,并在检查时记录最长的回文子串。虽然该方法简单易懂,但它的时间复杂度为 O(n^3),对于较长的字符串来说效率较低。

def longestPalindrome(s):
    def is_palindrome(substring):
        return substring == substring[::-1]

    n = len(s)
    max_len = 0
    start = 0

    for i in range(n):
        for j in range(i, n):
            if is_palindrome(s[i:j+1]) and (j - i + 1) > max_len:
                max_len = j - i + 1
                start = i

    return s[start:start + max_len]

优点:

  • 实现简单直观,易于理解。

缺点:

  • 时间复杂度为 O(n^3),对于长字符串性能较差。

解法二:中心扩展法

中心扩展法通过从字符串的每个位置向外扩展,寻找回文子串。这种方法利用回文串的对称性,能在 O(n^2) 的时间复杂度内找到最长的回文子串,较暴力搜索法有明显的性能提升。

def longestPalindrome(s):
    if not s or len(s) == 1:
        return s

    def expand_around_center(left, right):
        while left >= 0 and right < len(s) and s[left] == s[right]:
            left -= 1
            right += 1
        return s[left + 1:right]

    max_palindrome = ""
    for i in range(len(s)):
        odd_palindrome = expand_around_center(i, i)
        even_palindrome = expand_around_center(i, i + 1)
        max_palindrome = max(odd_palindrome, even_palindrome, max_palindrome, key=len)

    return max_palindrome

优点:

  • 时间复杂度为 O(n^2),较为高效。
  • 代码较简洁,且适用于大多数实际场景。

缺点:

  • 对于极端大数据量,仍然可能存在性能瓶颈。

解法三:动态规划法

动态规划法通过构建一个二维表来记录子串是否为回文,以此减少重复计算的次数。其时间复杂度同样为 O(n^2),但在空间复杂度上会有额外的消耗 O(n^2),适用于需要明确记录所有回文状态的情况。

def longestPalindrome(s):
    n = len(s)
    if n == 0:
        return ""
    
    dp = [[False] * n for _ in range(n)]
    start, max_len = 0, 1
    
    for i in range(n):
        dp[i][i] = True
    
    for end in range(1, n):
        for start in range(end):
            if s[start] == s[end]:
                if end - start == 1 or dp[start + 1][end - 1]:
                    dp[start][end] = True
                    if end - start + 1 > max_len:
                        max_len = end - start + 1
                        longest_palindrome_start = start

    return s[longest_palindrome_start:longest_palindrome_start + max_len]

优点:

  • 可以记录所有子串的回文状态,便于追溯具体情况。
  • 理论上稳定的 O(n^2) 时间复杂度,适合分析数据时使用。

缺点:

  • 额外的 O(n^2) 空间复杂度,可能会导致空间使用过大。

解法四:马拉车算法

马拉车算法(Manacher’s Algorithm)是一种线性时间复杂度 O(n) 的算法。它利用回文的对称性,特别适合用于寻找最长回文子串。这是解决该问题的最优解,但其实现较为复杂。

def longestPalindrome(s):
    t = '#' + '#'.join(s) + '#'
    n = len(t)
    p = [0] * n
    c = r = 0
    max_center = 0
    
    for i in range(n):
        mirror = 2 * c - i
        if i < r:
            p[i] = min(r - i, p[mirror])
        
        while i + p[i] + 1 < n and i - p[i] - 1 >= 0 and t[i + p[i] + 1] == t[i - p[i] - 1]:
            p[i] += 1
        
        if i + p[i] > r:
            c, r = i, i + p[i]
        
        if p[i] > p[max_center]:
            max_center = i
    
    start = (max_center - p[max_center]) // 2
    return s[start:start + p[max_center]]

优点:

  • 时间复杂度为 O(n),是最优解,适用于需要极高效率的场景。
  • 对称性处理巧妙,可提升处理大数据集时的性能。

缺点:

  • 实现复杂度较高,理解和编码难度大。

总结与思考

寻找最长回文子串的方法多样,从暴力搜索到马拉车算法,每种方法都有其优缺点:

  1. 暴力搜索法:尽管简单直观,但效率较低,仅适合处理小规模数据。
  2. 中心扩展法:通过中心向外扩展,以较高效率找到回文子串,适用于大部分实际应用。
  3. 动态规划法:利用子问题记录状态,能有效避免重复计算,但空间复杂度较高。
  4. 马拉车算法:在时间复杂度上最优,适用于处理大规模数据的高效需求。

在实际应用中,选择合适的算法不仅依赖于问题的规模和复杂度,还需考虑实现的难易程度和应用场景。


扩展思考

  1. 文本处理中的应用:回文子串在自然语言处理、数据压缩等领域有广泛应用,理解回文结构有助于我们更好地处理文本数据。
  2. 字符串匹配算法:通过学习最长回文子串的求解方法,我们还能拓展到字符串匹配等更复杂的问题。
  3. 时间复杂度优化:马拉车算法为 O(n) 的复杂度,为我们提供了极致优化的思路,值得在其他复杂算法问题中学习和借鉴。

通过本文的讲解,相信你已经对寻找最长回文子串的各种算法有了深入的理解,并掌握了处理类似字符串问题的技巧。

关注博客,解锁更多字符串处理技巧!
作者信息

作者 : 繁依Fanyi
CSDN: https://techfanyi.blog.csdn.net
掘金:https://juejin.cn/user/4154386571867191

http://www.kler.cn/a/302867.html

相关文章:

  • 前缀和技巧解析
  • 时序论文20|ICLR20 可解释时间序列预测N-BEATS
  • 当你想要conda安装遇到UnavailableInvalidChannel: HTTP 404 NOT FOUND for channel的问题
  • DAY112代码审计PHP开发框架POP链利用Yii反序列化POP利用链
  • React Hooks在现代前端开发中的应用
  • 微信小程序中使用离线版阿里云矢量图标
  • JavaWeb【day11】--(SpringBootWeb案例)
  • Android APK插件化:DynamicAPK技术如何改变游戏规则
  • linux安装redis、使用redis、用springboot连接redis
  • DataWind将string类型转化为int类型的报错解决
  • 全国智能网联招标项目一周速览(2024年9月13日)
  • leetcode练习 子集
  • HTML中的零宽字符
  • C# 异步编程中的 SynchronizationContext:掌握上下文同步的艺术
  • 源码编译llama.cpp 、ggml 后端启用自定义BLAS加速
  • 【STM32】独立看门狗(IWDG)原理详解及编程实践(上)
  • [网络][CISCO]CISCO IOS升级
  • 走进低代码表单开发(一):可视化表单数据源设计
  • Redis 入门 - C#|.NET Core客户端库六种选择
  • C++ | Leetcode C++题解之第389题找不同
  • 说真心话,在IT行业,项目经理不懂「敏捷管理」真混不下去!
  • 就服务器而言,ARM架构与X86架构有什么区别?各自的优势在哪里?
  • EP10 全局渐变背景色
  • Android Jetpact Lifecycle 解析
  • STM32双轮平衡小车(基于STM32F103C8T6HAL库)
  • [Go]-抢购类业务方案