当前位置: 首页 > article >正文

OpenAI「草莓」两周内发布?网传不是多模态,反应慢了10多秒

 就在刚刚,The Information曝出:OpenAI的草莓将于两周内上线!收费疑似200刀一个月,最大的特色就是比其他模型多思考10到20秒。然而因为「狼来了」太多回,网友们忍不住吐槽:OpenAI现在就是个炒作公司。

来源丨新智元

最新消息,「草莓」将在两周内发布!

这一消息由外媒The Information曝出,据称是两位已经测试过草莓模型的人士透露的。

发布时间比此前报道的秋季要早。

草莓跟其他模型的最大区别是啥呢?

答案是,更智能,但更慢、更贵。

而知名爆料人Jimmy Apples的说法是,一个模型(可能被称为GPT-4.5)预计会在十月发布。

与此同时,GPT-5很可能会在12月发布,但保险起见,说2025年第一或第二季度发布,是比较稳妥的。

 在9月3日,Jimmy Apple还曾经艾特Sam Altman,戏谑地问道:「我耳边的低语是真的吗?我们终于要在十月做一些事了吗?」

 根据Jimmy Apple的说法,需要耐心的时代已经过去,现在,我们迎来了发布的季节。

 

 而AI大V「数字生命卡兹克」表示,自己的朋友发现ChatGPT Pro会员已经上线了,售价200美元每月。

他们推测,ChatGPT Pro会员,或许就是为即将上线的草莓而准备的。

 不过根据此前的爆料,草莓本身的目的,似乎是为OpenAI的下一代大模型猎户座生成更高质量数据。

因此也有人说,我们不必对草莓抱以过高期待。

图片

草莓,比我们预期的更早?

据悉,两位已经测试过草莓模型的人士透露,OpenAI计划在两周内将其作为ChatGPT服务的一部分发布。

而在原先,The Information报道的发布时间是在秋季。

这一次,报道中透露了一些新细节。

首先,虽然草莓是ChatGPT的一部分,但它是一个独立的产品。

目前还不清楚它将如何推出,一种可能是将其包含这种驱动ChatGPT的AI模型的下拉菜单中,根据两位人士的说法。

这就会让草莓跟常规的服务有很大不同。

第二点,草莓和其他对话式AI最大的区别,就是它在响应之前会思考10到20秒,然后才回答问题。

多个网友现身说法,表示自己上周发现ChatGPT返回某个响应时需要10秒才能加载,或许OpenAI已经在进行a/b测试了。

 第三点,草莓的初始版本目前只能接收和生成文本,而不能处理图像,这也就意味着,它尚未像OpenAI的其他模型一样实现多模态功能。

因为如今发布的大多数LLM都是多模态的,这个缺陷对比之下就很显著。

最后,就是定价问题了。

现在OpenAI的聊天机器人有免费的,也有分等级的订阅价格。

草莓可能会有低价位和高价位的两档,前者会有速率限制,并且限制用户每小时的最大消息数量;而更高价位的版本,响应的速度也会更快。

这种安排,当然也是希望让更多用户为新模型付费,就像此前OpenAI限制ChatGPT免费用户消息数量一样。

草莓会怎样收费呢?

根据The Information此前的爆料,每月50、75、200、2000刀似乎都有可能。

图片

一位知情人士称,在OpenAI早期的内部讨论中,订阅价格曾高达每月2000美元,但并未最终确定

如今看来,200美元/月的定价应该是没跑了。

来源:数字生命卡兹克

The Information还预测,目前为ChatGPT付费(每月20美元)的客户,会比免费用户更早访问首个草莓模型。

处理复杂问题更拿手

据悉,草莓会比GPT-4o更擅长复杂的问题,或多步骤查询。

目前,如果用户想在ChatGPT中得到理想的答案,往往还需要输入各种格外的prompt。

比如用「连贯思维提示」,让ChatGPT通过中间推理步骤来得出答案。

而草莓可能会避免这种麻烦,让用户一步得到结果。

这也就意味着,草莓不仅在数学和编码问题上会更好,还会更擅长主观的商业任务,比如头脑风暴一个产品营销策略。

爆料人表示,草莓的思考步骤,会避免它出错。

而多思考的那十秒到二十秒,会让它更可能知道,何时要向客户询问后续问题,来完成对他们的解答。

多思考20秒是鸡肋?

然而两位人士透露,OpenAI还需要再解决一些问题。

比如,理论上讲,草莓应该能够在用户提出简单问题时,跳过其思考步骤。然而在实际应用中,模型并不总是这样。

它可能会错误地花费过多时间,来回答那些其他OpenAI模型很快就能回答的问题。

 

用过草莓模型的人抱怨说,跟GPT-4o相比,草莓的回复只是稍稍更好一些,但并没有好到值得用户去等10到20秒。

图片

另外,OpenAI希望迎合用户的这一特定偏好:在回答新问题前,草莓会记住并且整合与用户先前的聊天记录。

这个细节非常重要,比如如果用户希望软件代码以某种格式书写的时候,这种能力就非常有用。

然而令人沮丧的是,草莓并不总是能做到这一点。

网友吐槽:还要挤多久?

冷知识:距离OpenAI发布GPT-4,已经过去了一年零六个月。而新模型的影子,至今还没看到。

OpenAI的草莓,来来回回炒作了好几遍。狼来了的故事来了太多次,网友们都快麻了。

 

别家都是要发模型就干脆利落地发,只有它把同一个话题来回来去地炒,就是不发真东西。

奥特曼之前晒出花园里的草莓照,就曾一度引起轩然大波,然而最终却无事发生,这种「谜语人」的操作难免令人生厌。

现在提起OpenAI,很多群众的第一反应就是——

 

没错,它已经逐渐沦为「炒作」的代名词。

更有网友做出梗图,调侃道:OpenAI发布新模型的姿势是这样的——

 这样的——

 

以及这样的——

图片

 

本来在大模型领域,OpenAI是遥遥领先的领导者。但如今,竞争者们早已后来居上了。

上个月,谷歌就推出了AI语音助手 ,能够灵活处理用户的突然中断和话题变化。

要知道,OpenAI在五月就首发了「Her」的功能,然而这个语音助手GPT-4o Voice随后却推迟了发布,原因是OpenAI在提高安全措施,确保模型拒绝不当内容。

如今正值草莓模型的发布前期,可能OpenAI也在做类似的准备。

而最令人失望的一点其实是,跟前两年的如火如荼相比,今年OpenAI的发展似乎已经停滞了。

图片

与此同时,模型的计算量、参数大小、数据集大小,都纷纷遭遇瓶颈,开源模型和闭源模型的能力也在逐渐缩小。

是不是因为没有不够的GPU,所以我们现在依然离AGI如此遥远?

图片

如何破局?用RL

打破瓶颈的方法,如今各家都走到了同一路径——Self-play RL。

图片

在LLM领域,自我博弈理论看起来就像是AI反馈

Claude 3.5就是基于Self-play RL做出的,因此代码能力强到突出。

而我们都知道,草莓有一个重要作用,就是给下一代大模型合成数据,这里面有个前提,就是它同样是基于新范式Self-play做出的。

很多LLM的弱点就在推理能力上,而有些初创公司为了提高它们的推理能力,就采用了一种廉价的技巧,将问题分解为更小的步骤,尽管这些方法速度慢且成本高昂。

图片

AlphaGo就是通过Self-play学习,击败了李世石

在草莓中,我们也看到了类似的思路。

用Self-play RL去验证,自然就能让草莓的数学和代码能力上飞速暴涨。

同样,付出的代价就是极高的推理成本,导致它又贵、又慢。

但得到的结果,是极高的智能,或许启发我们通往AGI的路线,就靠草莓这种思路了。

说起来,「草莓之父」,其实就是已经离职了的OpenAI的首席科学家Ilya Sutskever。

图片

据悉,OpenAI的一些人认为Q*可能是OpenAI在AGI上取得的一个突破

在Ilya离职之前,OpenAI的研究人员Jakub Pachocki和Szymon Sidor,在Ilya的工作基础上开发了一个新的数学求解模型Q*。

据称,Q*解决的此前从未见过的数学题。

Ilya做出的突破,使OpenAI不再受限于获取足够的高质量数据来训练新模型,而这,正是开发下一代模型的主要障碍。

另外,在去年Q*的前期准备中,OpenAI研究人员开发了一种被称为「测试时计算」的概念变体,目的是提升LLM的问题解决能力。

这样,LLM就会花更多时间考虑被要求执行的命令,或问题的各个部分。

当时,Ilya发表了一篇与这项工作相关的博客,展示了模型如何解决了数个极有难度的数学问题。

比如在下面这道题中,GPT-4成功执行了一系列复杂的多项式分解。

图片

图片

图片

基于这类技术做出的草莓,虽然更贵、更慢,但数学和推理的进步无疑是惊人的。

或许对于普通用户,它未必是一个更值得付费的产品。

但对于需要高阶能力的场景,草莓会更有发挥的余地。

大佬猜测:谷歌DeepMind论文疑似揭示方法

有趣的是,Menlo风投负责人、前谷歌搜索工程师Debarghya Das发推称:Google DeepMind在最近一篇论文中提出的方法,可能就是OpenAI在Strawberry上用的。

图片

论文提出,让LLM进行更多的「测试时计算」(test-time computation),对于构建能在开放语境下操作、能实现自我提升的agent,是关键的一步

而这篇论文就重点研究了扩展「推理期计算」(inference-time computation)这个问题。

如果允许LLM使用固定但非平凡量的推理期计算,它在应对具有挑战性的提示词时,可以有多少性能提升?

这个问题不仅影响LLM的可实现性能,还关系到LLM预训练的未来,以及如何在推理计算和预训练计算之间进行权衡。

为了回答这个问题,研究团队分析了扩展测试时计算的两种主要机制:(1)针对密集的、基于过程的验证器奖励模型进行搜索;(2)根据测试时得到的提示词,自适应更新模型对响应的分布。

结果显示,在这两种情况下,对测试时计算的不同扩展方法的有效性,很大程度上取决于提示词的难度。

图片

论文地址:https://arxiv.org/abs/2408.03314

基于此,研究团队提出了一种「计算最优」扩展策略——通过为每个提示词自适应地分配测试时计算,使测试时计算的扩展的效率提高4倍以上。

另外,在FLOPs一致的评估中,对于那些较小的基础模型已取得一定程度非平凡成功率的问题,测试时计算可以使其超越规模大14倍的模型。

图片

不过,网友们对这一猜测并不认可。

Topology首席执行官Aidan McLaughlin表示,谷歌DeepMind探讨的是最佳N采样和蒙特卡洛树搜索(MCTS)。

而「草莓」可能会是一个具有特殊token(回溯、规划等)的深度混合模型。它可能会通过人类数据标注者和来自易于验证领域(如数学/编程)的强化学习进行训练。

图片

另一位网友也提出疑问——「草莓」不是一个神经符号模型吗?

图片

对此,Deedy解释道:「根据网上的这些信息和传闻:『草莓』将通过在响应空间中使用搜索技术来改进推理,其推理时间计算为10到20秒。」

而这,正是这项研究所解释的内容。

图片

参考资料:

https://x.com/apples_jimmy/status/1833595024543781088

https://www.theinformation.com/articles/new-details-on-openais-strawberry-apples-siri-makeover-larry-ellison-doubles-down-on-data-centers?rc=epv9gi

https://x.com/deedydas/status/1833539735853449360

https://mp.weixin.qq.com/s/sc5aMSwU9dKd3X4lzTjkIg


http://www.kler.cn/a/303137.html

相关文章:

  • 软件测试面试八股文(超详细整理)
  • STM32嵌入式闹钟系统设计与实现
  • 实时渲染技术如何助力3D虚拟展厅?
  • adb shell常用命令
  • 分享一个傻瓜式一键启动的加速器
  • learn-F12 Performance(性能)前端性能分析(LCP,CLS,INP)
  • docker 多服务只暴露一个客户端
  • 003InputSystem新输入系统学习工作笔记
  • R和Python数据格式的通用性
  • Mysql | 知识 | 事务隔离级别
  • netty之NioEventLoop和NioEventLoopGroup
  • 统计信息的导出导入
  • 顶点照明渲染路径
  • Java异常处理机制详解
  • 如何把我另一个分支上的commit拿过来
  • C语言整型数据在内存中的存储(22)
  • python如何将DICOM图片转为JPG?
  • Docker torchserve 部署模型流程
  • MATLAB | R2024b更新了哪些好玩的东西?
  • 在Excel中通过Python运行公式和函数实现数据计算
  • 计算机网络27、28——Linux命令1、2
  • 这款神器,运维绝杀 !!! 【送源码】
  • 内部flash模拟成EepRom-重新梳理
  • codeup:将已有文件夹推送到已有仓库
  • 计算机毕业设计 | SpringBoot+vue 游戏商城 steam网站管理系统(附源码)
  • 【运维监控】Prometheus+grafana+kafka_exporter监控kafka运行情况