当前位置: 首页 > article >正文

爆改YOLOv8|利用yolov9的ADown改进卷积Conv-轻量化

1,本文介绍

本文将利用YOLOv9的ADown模块改进卷积。

关于ADown的详细介绍可以看论文:https://arxiv.org/abs/2402.13616

本文将讲解如何将ADown融合进yolov8

话不多说,上代码!

2, 将ADown融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个ADown.py文件,文件名字可以根据你自己的习惯起,然后将ADown的核心代码复制进去。


import torch
import torch.nn as nn
 
 
__all__ = ['ADown']
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        return self.act(self.conv(x))
 
 
class ADown(nn.Module):
    def __init__(self, c1, c2):  # ch_in, ch_out, shortcut, kernels, groups, expand
        super().__init__()
        self.c = c2 // 2
        self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
        self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
 
    def forward(self, x):
        x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
        x1,x2 = x.chunk(2, 1)
        x1 = self.cv1(x1)
        x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
        x2 = self.cv2(x2)
        return torch.cat((x1, x2), 1)
 
 
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 

2.2 步骤二

在task.py导入我们的模块

from .modules.ADown import Adown

2.3 步骤三

在task.py的parse_model方法里面注册我们的模块

到此注册成功,复制后面的yaml文件直接运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales:  # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, ADown, [128]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, ADown, [256]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, ADown, [512]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, ADown, [1024]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, ADown, [256]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, ADown, [512]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 关于ADown的位置大家可以自行调换,位置不同结果不同

不知不觉已经看完了哦,动动小手留个点赞收藏吧--_--


http://www.kler.cn/a/303745.html

相关文章:

  • 微信小程序自定义顶部导航栏(适配各种机型)
  • FBX福币交易所恒指收跌1.96% 半导体股继续回调
  • 前端搭建低代码平台,微前端如何选型?
  • 微澜:用 OceanBase 搭建基于知识图谱的实时资讯流的应用实践
  • 基于OpenCV的自制Python访客识别程序
  • 基于springboot的汽车租赁管理系统的设计与实现
  • MySQL--数据库基础
  • 【iOS】——应用启动流程
  • 【GBase 8c V5_3.0.0 分布式部署(单机安装)】
  • 软件开发人员的真实面
  • TinyRedis项目复盘
  • 【动态规划】子序列问题二(数组中不连续的一段)
  • 系统资源智能管理:zTasker软件的监控与优化
  • 小需求:(vue2) 判断el-table某一行某一格里面是否包含‘百度‘两个字,如果包含,点击‘百度‘两个字跳转到‘百度‘页面,并给‘百度‘两个字加蓝色颜色
  • HTML+CSS - 网页布局之网格布局
  • IO多路复用,服务器,广播与组播
  • Apache Cordova开发教程-入门基础
  • 全志T113方案OTA
  • npm镜像源证书过期的问题解决
  • 【智路】智路OS airos-vehicle
  • SpringBoot + Vue + ElementUI 实现 el-table 分页功能详解
  • linux-L7-linux 查看json文件
  • 用Druid连接池,出现系统找不到指定路径的解决方案
  • 学习常用的Docker命令
  • 研一小白读论文记录,计算机视觉,Transformer
  • linux入门到实操-4 linux系统网络配置、连接测试、网络连接模式、修改静态IP、配置主机名