个人学习笔记6-2:动手学深度学习pytorch版-李沐
#深度学习# #人工智能# #神经网络#
现代卷积神经网络
7.5 批量规范化
可持续加速深层网络的收敛速度,是一种线性变化。
批归一化原理公式思想:(B表批量大小,μB、B表示根据输入的小批量数据随机计算的均值和方差;γ和β是新学习到的新方差和均值)
批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放,可以加速收敛速度,但一般不改变模型精度。
7.5.1 训练深层网络
批量规范化应用于单个可选层(也可以应用到所有层),其原理如下:在每次训练迭代中,我们首先规范化输入,即通过减去其均值并除以其标准差,其中两者均基于当前小批量处理。接下来,我们应用比例系数和比例偏移。
请注意,如果我们尝试使用大小为1的小批量应用批量规范化,我们将无法学到任何东西。这是因为在减去均值之后,每个隐藏单元将为0。所以,只有使用足够大的小批量,批量规范化这种方法才是有效且稳定的。请注意,在应用批量规范化时,批量大小的选择可能比没有批量规范化时更重要。
7.5.2 批量规范化层
通常,批量规范化层置于全连接层中的仿射变换和激活函数之间。
对于卷积层,我们可以在卷积层之后和非线性激活函数之前应用批量规范化。当卷积有多个输出通道时,我们需要对这些通道的“每个”输出执行批量规范化,每个通道都有自己的拉伸(scale)和偏移(shift)参数,这两个参数都是标量。
7.5.3 从零实现
由于接下来的网络训练需用到GPU,因此全在移动九天平台上进行操作。有免费GPU v100可使用。
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):#gamma, beta为可学习的两个参数,moving_mean, moving_var可认为是全局的均值和方差(整个数据集而非小批量),eps避免除0,momentum用来更新moving_mean, moving_va的东西(通常取0.9或者其他的一个固定值)。
# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:#为4就是2d卷积层
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)#0批量大小,1输出通道,2和3是高和宽。按照通道求均值,得1xnx1x1的4d特征。
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
# 训练模式下,用当前的均值和方差做标准化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移动平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 缩放和移位
return Y, moving_mean.data, moving_var.data
创建一个正确的BatchNorm层。这个层将保持适当的参数:拉伸gamma和偏移beta,这两个参数将
在训练过程中更新。此外,这个层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。
class BatchNorm(nn.Module):
# num_features:完全连接层的输出数量或卷积层的输出通道数。
# num_dims:2表示完全连接层,4表示卷积层
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 非模型参数的变量初始化为0和1
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
# 如果X不在内存上,将moving_mean和moving_var
# 复制到X所在显存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新过的moving_mean和moving_var
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
7.5.4 使用批量规范化层的 LeNet
批量规范化是在卷积层或全连接层之后、相应的激活函数之前应用的。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
在Fashion‐MNIST数据集上训练网络。
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果输出:
展示第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta。
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
结果输出:
7.5.5 简明实现
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
使用相同超参数来训练模型:
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果输出:
7.6 残差网络(ResNet)
7.6.1 函数类
只有当较复杂的函数类包含较小的函数类时,我们才能确保提高它们的性能。对于深度神经网络,如果我们能将新添加的层训练成恒等映射(identity function)f(x) = x,新模型和原模型将同样有效。同时,由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差。其抽象对比图如下所示:
7.6.2 残差块
由于通道数的变化,直接加不上去。因此有下图右的结构,使用1x1的卷积改变通道数。
ResNet网络架构:
残差块实现:
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module): #@save
def __init__(self, input_channels, num_channels,
use_1x1conv=False, strides=1):#(输入通道,输出通道,是否使用1x1卷积,步幅=1)
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels,
kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels,
kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels,
kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
查看输入和输出形状一致的情况:
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
结果输出:
也可以在增加输出通道数的同时,减半输出的高和宽:
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
结果输出:
7.6.3 ResNet模型
ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的7 × 7卷积层后,接步幅为2的3 × 3的最大汇聚层。不同之处在于ResNet每个卷积层后增加了批量规范化层。
#设置第一阶段
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
#定义残差块
def resnet_block(input_channels, num_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:#如果i=0且不是first_block,则strides=2,即高宽减半
blk.append(Residual(input_channels, num_channels,
use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
#设置2-5阶段,在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。且每个模块有4个卷积层(不包括恒等映射的1 × 1卷积层)。加上第一个7 × 7卷积层和最后一个全连接层,共有18层。因此,这种模型通常被称为ResNet‐18。
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
#测试ResNet中不同模块的输入形状是如何变化的
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
结果输出:
书中例图如下:
7.6.4 训练模型
在Fashion‐MNIST数据集上训练ResNet-18
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果输出:
7.7 稠密连接网络(DenseNet)
(本节b站没有相应课程,仅跟书记录)
稠密连接网络(DenseNet))在某种程度上是ResNet的逻辑扩展。
7.7.1 从ResNet到DenseNet
如图所示,书中很详细(DenseNet输出是连接(用图中的[, ]表示)而不是像ResNet的简单相加):
稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。前者定义如何连接输入和输出,而后者则控制通道数量。
7.7.2 稠密块体
import torch
from torch import nn
from d2l import torch as d2l
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
#一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(
num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
# 连接通道维度上每个块的输入和输出
X = torch.cat((X, Y), dim=1)
return X
#测试(定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到
通道数为3 + 2 × 10 = 23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称
为增长率(growth rate)。)
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
结果输出:
7.7.3 过渡层
过渡层可以用来控制模型复杂度。它通过1 × 1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2))
#测试:对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。
blk = transition_block(23, 10)
blk(Y).shape
结果输出:
7.7.4 DenseNet模型
构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层:
#第一阶段
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块,稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
# 上一个稠密块的输出通道数
num_channels += num_convs * growth_rate
# 在稠密块之间添加一个转换层,使通道数量减半
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
#最后接上全局汇聚层和全连接层来输出结果。
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10))
#训练网络(使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。)
lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果输出:
(注:这章之后,直接进入13章-计算机视觉)