当前位置: 首页 > article >正文

roctracer 的应用示例

1,不用 roctracer 的普通场景

mt.cpp

/* Copyright (c) 2018-2022 Advanced Micro Devices, Inc.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE. */

#include <iostream>

// hip header file
#include <hip/hip_runtime.h>

#define HIP_CALL(call)                                                                             \
  do {                                                                                             \
    hipError_t err = call;                                                                         \
    if (err != hipSuccess) {                                                                       \
      fprintf(stderr, "%s\n", hipGetErrorString(err));                                             \
      abort();                                                                                     \
    }                                                                                              \
  } while (0)

#define WIDTH 1024


#define NUM (WIDTH * WIDTH)

#define THREADS_PER_BLOCK_X 4
#define THREADS_PER_BLOCK_Y 4
#define THREADS_PER_BLOCK_Z 1

// Device (Kernel) function, it must be void
__global__ void matrixTranspose(float* out, float* in, const int width) {
  int x = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  int y = hipBlockDim_y * hipBlockIdx_y + hipThreadIdx_y;

  out[y * width + x] = in[x * width + y];
}

// CPU implementation of matrix transpose
void matrixTransposeCPUReference(float* output, float* input, const unsigned int width) {
  for (unsigned int j = 0; j < width; j++) {
    for (unsigned int i = 0; i < width; i++) {
      output[i * width + j] = input[j * width + i];
    }
  }
}

int main() {
  float* Matrix;
  float* TransposeMatrix;
  float* cpuTransposeMatrix;

  float* gpuMatrix;
  float* gpuTransposeMatrix;

  hipDeviceProp_t devProp;
  HIP_CALL(hipGetDeviceProperties(&devProp, 0));

  std::cerr << "Device name " << devProp.name << std::endl;

  int i;
  int errors;

  Matrix = (float*)malloc(NUM * sizeof(float));
  TransposeMatrix = (float*)malloc(NUM * sizeof(float));
  cpuTransposeMatrix = (float*)malloc(NUM * sizeof(float));

  // initialize the input data
  for (i = 0; i < NUM; i++) {
    Matrix[i] = (float)i * 10.0f;
  }

  // allocate the memory on the device side
  HIP_CALL(hipMalloc((void**)&gpuMatrix, NUM * sizeof(float)));
  HIP_CALL(hipMalloc((void**)&gpuTransposeMatrix, NUM * sizeof(float)));

  uint32_t iterations = 100;
  while (iterations-- > 0) {
    std::cerr << "## Iteration (" << iterations << ") #################" << std::endl;

    // Memory transfer from host to device
    HIP_CALL(hipMemcpy(gpuMatrix, Matrix, NUM * sizeof(float), hipMemcpyHostToDevice));

    // Lauching kernel from host
    hipLaunchKernelGGL(
        matrixTranspose, dim3(WIDTH / THREADS_PER_BLOCK_X, WIDTH / THREADS_PER_BLOCK_Y),
        dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0, gpuTransposeMatrix, gpuMatrix, WIDTH);


    HIP_CALL(
        hipMemcpy(TransposeMatrix, gpuTransposeMatrix, NUM * sizeof(float), hipMemcpyDeviceToHost));


    // CPU MatrixTranspose computation
    matrixTransposeCPUReference(cpuTransposeMatrix, Matrix, WIDTH);

    // verify the results
    errors = 0;
    double eps = 1.0E-6;
    for (i = 0; i < NUM; i++) {
      if (std::abs(TransposeMatrix[i] - cpuTransposeMatrix[i]) > eps) {
        errors++;
      }
    }
    if (errors != 0) {
      fprintf(stderr, "FAILED: %d errors\n", errors);
    } else {
      fprintf(stderr, "PASSED!\n");
    }
  }

  // free the resources on device side
  HIP_CALL(hipFree(gpuMatrix));
  HIP_CALL(hipFree(gpuTransposeMatrix));

  // free the resources on host side
  free(Matrix);
  free(TransposeMatrix);
  free(cpuTransposeMatrix);

  return errors;
}

编译:

 $ hipcc mt.cpp -o mt

$ ./mt xxx

不会产生文件;

2,加入roctracer的源文件

MatrixTranspose.cpp:

/* Copyright (c) 2018-2022 Advanced Micro Devices, Inc.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE. */

#include <iostream>

// hip header file
#include <hip/hip_runtime.h>
#include "roctracer_ext.h"
// roctx header file
#include <roctx.h>

#define HIP_CALL(call)                                                                             \
  do {                                                                                             \
    hipError_t err = call;                                                                         \
    if (err != hipSuccess) {                                                                       \
      fprintf(stderr, "%s\n", hipGetErrorString(err));                                             \
      abort();                                                                                     \
    }                                                                                              \
  } while (0)

#define WIDTH 1024


#define NUM (WIDTH * WIDTH)

#define THREADS_PER_BLOCK_X 4
#define THREADS_PER_BLOCK_Y 4
#define THREADS_PER_BLOCK_Z 1

// Device (Kernel) function, it must be void
__global__ void matrixTranspose(float* out, float* in, const int width) {
  int x = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  int y = hipBlockDim_y * hipBlockIdx_y + hipThreadIdx_y;

  out[y * width + x] = in[x * width + y];
}

// CPU implementation of matrix transpose
void matrixTransposeCPUReference(float* output, float* input, const unsigned int width) {
  for (unsigned int j = 0; j < width; j++) {
    for (unsigned int i = 0; i < width; i++) {
      output[i * width + j] = input[j * width + i];
    }
  }
}

int main() {
  float* Matrix;
  float* TransposeMatrix;
  float* cpuTransposeMatrix;

  float* gpuMatrix;
  float* gpuTransposeMatrix;

  hipDeviceProp_t devProp;
  HIP_CALL(hipGetDeviceProperties(&devProp, 0));

  std::cerr << "Device name " << devProp.name << std::endl;

  int i;
  int errors;

  Matrix = (float*)malloc(NUM * sizeof(float));
  TransposeMatrix = (float*)malloc(NUM * sizeof(float));
  cpuTransposeMatrix = (float*)malloc(NUM * sizeof(float));

  // initialize the input data
  for (i = 0; i < NUM; i++) {
    Matrix[i] = (float)i * 10.0f;
  }

  // allocate the memory on the device side
  HIP_CALL(hipMalloc((void**)&gpuMatrix, NUM * sizeof(float)));
  HIP_CALL(hipMalloc((void**)&gpuTransposeMatrix, NUM * sizeof(float)));

  uint32_t iterations = 100;
  while (iterations-- > 0) {
    std::cerr << "## Iteration (" << iterations << ") #################" << std::endl;

    // Memory transfer from host to device
    HIP_CALL(hipMemcpy(gpuMatrix, Matrix, NUM * sizeof(float), hipMemcpyHostToDevice));

    roctxMark("before hipLaunchKernel");
    int rangeId = roctxRangeStart("hipLaunchKernel range");
    roctxRangePush("hipLaunchKernel");
    // Lauching kernel from host
    hipLaunchKernelGGL(
        matrixTranspose, dim3(WIDTH / THREADS_PER_BLOCK_X, WIDTH / THREADS_PER_BLOCK_Y),
        dim3(THREADS_PER_BLOCK_X, THREADS_PER_BLOCK_Y), 0, 0, gpuTransposeMatrix, gpuMatrix, WIDTH);
    roctxMark("after hipLaunchKernel");

    // Memory transfer from device to host
    roctxRangePush("hipMemcpy");

    HIP_CALL(
        hipMemcpy(TransposeMatrix, gpuTransposeMatrix, NUM * sizeof(float), hipMemcpyDeviceToHost));

    roctxRangePop();  // for "hipMemcpy"
    roctxRangePop();  // for "hipLaunchKernel"
    roctxRangeStop(rangeId);

    // CPU MatrixTranspose computation
    matrixTransposeCPUReference(cpuTransposeMatrix, Matrix, WIDTH);

    // verify the results
    errors = 0;
    double eps = 1.0E-6;
    for (i = 0; i < NUM; i++) {
      if (std::abs(TransposeMatrix[i] - cpuTransposeMatrix[i]) > eps) {
        errors++;
      }
    }
    if (errors != 0) {
      fprintf(stderr, "FAILED: %d errors\n", errors);
    } else {
      fprintf(stderr, "PASSED!\n");
    }
  }

  // free the resources on device side
  HIP_CALL(hipFree(gpuMatrix));
  HIP_CALL(hipFree(gpuTransposeMatrix));

  // free the resources on host side
  free(Matrix);
  free(TransposeMatrix);
  free(cpuTransposeMatrix);

  return errors;
}

编译:

只使用hipcc无法直接编译这个源文件

需要指定include 目录和链接库:

$ hipcc ./MatrixTranspose.cpp  -I /opt/rocm/include/roctracer/ -lroctx64

运行:

./a.out


http://www.kler.cn/a/304721.html

相关文章:

  • SQL Server 导入Excel数据
  • 迅为RK3576开发板Android 多屏显示
  • STM32的集成开发环境STM32CubeIDE安装
  • C++(二十一)
  • PyTorch使用教程(2)-torch包
  • JVM直击重点
  • 6- 【JavaWeb】Maven管理项目
  • html+css+js网页设计 旅游 厦门旅游网11个页面
  • K8s利用etcd定时备份集群结合钉钉机器人通知
  • MySQL下载安装
  • 数据备份和迁移-—SAAS本地化及未来之窗行业应用跨平台架构
  • 关于单片机的【汇编指令系统】
  • 数学建模常用模型全面总结(含适用条件、优点、局限性和应用场景)
  • 鸿蒙轻内核A核源码分析系列七 进程管理 (1)
  • django orm增删改查操作
  • 如何理解深度学习的训练过程
  • B站宋红康JAVA基础视频教程(chapter14数据结构与集合源码)
  • 图文检索(1):Rethinking Benchmarks for Cross-modal Image-text Retrieval
  • DORIS - DORIS之倒排索引
  • 【实践】应用访问Redis突然超时怎么处理?
  • FastAPI 应用安全加固:HTTPSRedirectMiddleware 中间件全解析
  • OpenStack × OceanBase: 打造高可用可扩展的基础设施平台
  • ARM驱动学习之4小结
  • Docker高级管理--Compose容器编排与私有仓库(Docker技术集群与应用)
  • 使用Spring Boot集成Nacos进行配置管理
  • rocky8安装docker步骤