当前位置: 首页 > article >正文

果蔬识别系统性能优化之路(四)

目录

    • 前情提要
      • 剩下问题
    • 问题排查
    • 解决方案
    • 下一步

前情提要

果蔬识别系统性能优化之路(三)

剩下问题

同步数据库数据并初始化ivf依然要8,9秒

问题排查

通过断点加时间打印,发生其实初始化ivf的时间很快,慢的是数据在网络间的传输,并在python端的数据解析,无语
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
本地调本地,都要十秒,这不合理,改!

解决方案

因为这里必须要查一次全量数据,然后存入redis并将特征值传给python端进行初始化,所以最快的方案就是舍弃数据传输,直接在python端进行查询并初始化,即在python端查全量数据+设置redis+初始化ivf,虽然不想承认,但确实把python端做重在架构和设计层面可能都是最优解,改吧

  1. python端增加mysql查询
import mysql.connector
from mysql.connector import pooling

# 配置数据库连接
db_config = {
    'host': 'localhost',  # 替换为你的 MySQL 主机地址
    'user': 'root',  # 替换为你的 MySQL 用户名
    'password': 'cmkkl407',  # 替换为你的 MySQL 密码
    'database': 'cnn'  # 替换为你的数据库名称
}
pool = pooling.MySQLConnectionPool(pool_name="mypool", pool_size=5, **db_config)


def get_feature_by_store_code(store_code):
    query = "SELECT id, features FROM feature WHERE storeCode REGEXP %s"
    results = query_data(query, params=(f"(^|,){store_code}(,|$)",))
    return results


def query_data(query, params):
    connection = pool.get_connection()
    cursor = connection.cursor(dictionary=True)
    cursor.execute(query, params)
    results = cursor.fetchall()
    cursor.close()
    connection.close()  # 连接会被返回到池中
    return results

  1. 修改sync方法
  def sync(self, store_code):
        if store_code + '-featureDatabase' in self.ivfObj:
            del self.ivfObj[store_code + '-featureDatabase']
        data = get_feature_by_store_code(store_code)

        def parse_features(item):
            return orjson.loads(item['features'])

        with ThreadPoolExecutor() as executor:
            features_list = list(executor.map(parse_features, data))
        # 提取所有特征并转换为 NumPy 数组
        features = np.array(features_list, dtype=np.float32)
        self.ivfObj[store_code + '-featureDatabase'] = IVFPQ(features)
        ids = [item['id'] for item in data]
        return ids

由于python端查出来的json默认会给字符串格式,所以还需要转成json
一个优化小点:

并行处理:使用多线程或多进程并行处理数据。可以使用 concurrent.futures 库中的 ThreadPoolExecutor 或 ProcessPoolExecutor 来加快解析速度。

   def parse_features(item):
            return orjson.loads(item['features'])

        with ThreadPoolExecutor() as executor:
            features_list = list(executor.map(parse_features, data))

同时利用查出了所有id将ids进行返回给nestjs端直接进行redis存储
4. nestjs端修改

 /**
   * 同步redis
   * @param storeCode
   */
  async syncRedis(storeCode: string) {
    const url = 'http://localhost:5000/sync'; // Python 服务的 URL
    const s = Date.now();
    const response = await firstValueFrom(this.httpService.post(url, { storeCode }));
    const { ids } = response.data;
    await this.redisService.set(`${storeCode}-featureDatabase`, JSON.stringify(ids));
    const e = Date.now();
    console.log(`同步redis耗时:${e - s}ms`);
  }
  1. 优化后速度减少了一倍
    在这里插入图片描述

下一步

  1. 新建store_feature表,关联storeCode和featureId表,对数据库进行规范化,创建一个新的表来映射storeCode与feature的关系,从而可以使用简单的WHERE条件来充分利用索引
  2. 实现对特征向量ivf的增删改查

http://www.kler.cn/a/305400.html

相关文章:

  • RabbitMQ高效的消息队列中间件原理及实践
  • 为什么hbase在大数据领域渐渐消失
  • 大数据新视界 -- 大数据大厂之 Impala 存储格式转换:从原理到实践,开启大数据性能优化星际之旅(下)(20/30)
  • MySQL与Oracle对比及区别
  • Linux 常用操作指令大揭秘(下)
  • DOM 规范 — MutationObserver 接口
  • HarmonyOS开发之使用PhotoViewPicker(图库选择器)保存图片
  • 基于SpringBoot+Vue+MySQL的IT技术交流和分享平台
  • apt:Debian 高级包管理器
  • Pyecharts数据可视化大屏:打造沉浸式数据分析体验
  • MySQL中用with as 解决临时表的问题
  • 【Android】【Bug】使用OSmdroid绘制轨迹断裂问题
  • 数据赋能(202)——开发:数据开发管理——技术方法、主要工具
  • Djourney新手入门基础,AI摄影+AI设计+AI绘画-AIGC作图
  • 【PyCharm】和git安装教程
  • Haskell中的数据交换:通过http-conduit发送JSON请求
  • (k8s)Kubernetes本地存储接入
  • 双指针的用法以及示例
  • Python基础语法(3)上
  • 深入解析 SQLSugar:从基础 CRUD 到读写分离与高级特性详解
  • 基于YOLOv10的光伏板缺陷检测系统
  • 【drools】文档翻译1:入门
  • clip论文阅读(Learning Transferable Visual Models From Natural Language Supervision)
  • Spring Boot母婴商城:打造一站式购物体验
  • 数组及使用方法
  • 【Linux】进程调度与切换