当前位置: 首页 > article >正文

【深度学习】Pytorch基础

目录

  • 梯度下降算法(Gradient Descent)
    • 代码实现

梯度下降算法(Gradient Descent)

梯度下降算法在机器学习中应用十分的广泛,不论是在线性回归还是Logistic回归中,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。

求下面函数的极值
y = x s i n ( x ) y=xsin(x) y=xsin(x)
可以发现在当前这个区间范围内这个函数有两个极小值点,如果我们想寻找当前函数在这个区间内的最小值点,那么当然是第二个极小值点更合适一些,可是并不一定能够如我们所愿顺利地找到第二个极小值点,这时候只能够通过多次尝试。
在这里插入图片描述

  • 梯度的概念:梯度就是函数对它的各个自变量求偏导后,由偏导数组成的一个向量。
    接着来看下一个函数
    在这里插入图片描述
    既然算法是“梯度下降法”,所以先求一下这个函数的梯度,当前的函数f(x)的梯度就是他的导数,这很简单
    f ( x ) ′ = 2 x − 2 f(x)' = 2x - 2 f(x)=2x2
    图上小红点的坐标是(6,f(6)),那么可以得到 f ( 6 ) ′ = 10 f(6)'=10 f(6)=10
    现在用导数值的正负来表示方向如果导数的值是正数,那么就代表x轴的正方向。如果导数的值是负数就代表x轴的负方向。那么就会发现知道了这个方向之后也就知道了应该让x往哪个方向变化f(x)的值减小。那么就让 朝着导数告诉我们的方向的反方向变化就好啦。
    在这里插入图片描述
  • 梯度下降法的目标:搜索出来一个能让函数值尽可能小的位置,所以让x朝着红色箭头的方向走。
    代码中有一个eta变量,专业称为“学习率”。使用数学表达式来更新x的过程那就是:
    x ← x − e t a ∗ d f ( x ) d x x \leftarrow x -eta*\frac{df(x)}{dx} xxetadxdf(x)
    意思是让x减去eta乘以函数的导数。其中eta是为了控制x更新的幅度,将eta的值设置小一点,那么每一次的更新的幅度就会小一点。

代码实现

import numpy as np
import matplotlib.pyplot as plt
# 定义 x 的范围
x = np.linspace(-7, 9, 400)  # 从 -7 到 9,总共 400 个点
y = (x - 1)**2 + 1  # 函数 y = (x-1)^2 + 1
# 计算 x = 6 时的 y 值
cur_x = 6
cur_y = (cur_x - 1)**2 + 1
eta = 0.05
iter = 1000
all_x = []# 记录迭代过程中的 x 值
all_y = []# 记录迭代过程中的 y 值
for i in range(iter):
    # 记录迭代过程
    all_x.append(cur_x)
    all_y.append(cur_y)
    # 计算导数
    dy = 2*cur_x - 2
    # 更新 x 和 y
    cur_x = cur_x - eta*dy
    cur_y = (cur_x - 1)**2 + 1
# 绘图
plt.figure(figsize=(10, 6))  # 设置图形大小
plt.plot(x, y, label=r'$y = (x-1)^2 + 1$', color='blue')  # 绘制函数曲线
plt.title('Plot of $y = (x-1)^2 + 1$')  # 图形标题
plt.xlabel('x')  # x 轴标签
plt.ylabel('y')  # y 轴标签
plt.axhline(0, color='black', linewidth=0.5, ls='--')  # 添加 x 轴
plt.axvline(0, color='black', linewidth=0.5, ls='--')  # 添加 y 轴
plt.grid(True)  # 添加网格
plt.legend()  # 添加图例
plt.scatter(np.array(all_x), np.array(all_y), color='red')# 绘制迭代过程
plt.show()  # 显示图形

在这里插入图片描述
在这里插入图片描述


http://www.kler.cn/a/306562.html

相关文章:

  • python怎么设置环境变量
  • MySQL —— MySQL逻辑架构与查询过程
  • 3D编辑器教程:如何实现3D模型多材质定制效果?
  • 使用 Keras 训练一个卷积神经网络(CNN)(入门篇)
  • 关于GCC内联汇编(也可以叫内嵌汇编)的简单学习
  • 【最新版】Stable Diffusion4.9(AI绘画)下载及安装教程(附软件安装包)!
  • 分享一些成功的 SQL 优化案例
  • 2024工业机器视觉产业现状
  • 多模态大语言模型综述(中)-算法实用指南
  • 如何在Django中创建新的模型实例
  • MFC工控项目实例之十六输入信号验证
  • app抓包 chrome://inspect/#devices
  • 2024.9.12(k8s环境搭建2)
  • WebSocket vs. Server-Sent Events:选择最适合你的实时数据流技术
  • VUE3中ref与reactive
  • Sentinel 安装
  • BSV区块链上的覆盖网络服务现已开放公测
  • 常回家看看之house_of_cat
  • 基于单片机的超声波液位检测系统(论文+源码)
  • STM32 HAL freertos零基础(二)-通过STM32CubeMX配置Freertos后在程序中进行任务创建,便于任务管理与识别。
  • 微服务保护之熔断降级
  • 【前端】ref引用的作用
  • 2----手机维修工具 集合解锁 修复参数 刷机支持高通 MTK 展讯等芯片 支持一些PDA设备
  • 【机器学习】--- 生成对抗网络 (GANs)
  • Linux-Swap分区使用与扩容
  • Java集合接口List