当前位置: 首页 > article >正文

动手学深度学习(pytorch)学习记录31-批量规范化(batch normalization)[学习记录]

目录

  • 批量规范化(batch normalization)
  • 从头开始实现一个具有张量的批量规范化层
  • 简明实现

批量规范化(batch normalization)

可持续加速深层网络的的收敛速度。再结合残差块,批量规范化使得研究人员可以训练100层以上的网络。
为什么需要批量规范化层呢?
1、数据预处理的方式通常会对最终结果产生巨大影响;
2、中间层的变量可能具有更广变化范围,由于可变值的范围不同,是否需要对学习率进行调整;
3、深层的网络很复杂,容易过拟合。

批量规范化层的在训练模式中,通过小批量统计数据进行规范化;在预测模式中通过数据集统计进行规范化。

从头开始实现一个具有张量的批量规范化层

import torch
from torch import nn
from d2l import torch as d2l


def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
    if not torch.is_grad_enabled():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 缩放和移位
    return Y, moving_mean.data, moving_var.data

创建一个正确的BatchNorm层

class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示完全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 非模型参数的变量初始化为0和1
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)
    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var
        # 复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

使用批量规范化层的 LeNet

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
    nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
    nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.273, train acc 0.898, test acc 0.881
19328.6 examples/sec on cuda:0

在这里插入图片描述
看从第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta

net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
(tensor([3.9210, 1.8005, 0.3629, 1.7734, 2.6866, 3.6042], device='cuda:0',
        grad_fn=<ViewBackward0>),
 tensor([-2.6395, -2.0010,  0.3424, -2.0999, -1.0537, -3.7402], device='cuda:0',
        grad_fn=<ViewBackward0>))

简明实现

直接使用深度学习框架中定义的BatchNorm

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
    nn.Linear(84, 10))

通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们的自定义代码由Python实现。

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.276, train acc 0.898, test acc 0.873
31860.4 examples/sec on cuda:0

在这里插入图片描述

· 本文使用了d2l包,这极大地减少了代码编辑量,需要安装d2l包才能运行本文代码

封面图片来源
欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。


http://www.kler.cn/a/308102.html

相关文章:

  • [JAVAEE] 面试题(四) - 多线程下使用ArrayList涉及到的线程安全问题及解决
  • 软件测试:测试用例详解
  • 【安全通信】告别信息泄露:搭建你的开源视频聊天系统briefing
  • Linux如何更优质调节系统性能
  • 提取神经网络数学表达式
  • mongoDB的安装及使用
  • C++基础面试题 | C++中的构造函数可以是虚函数吗? C++中的析构函数一定要是虚函数吗?
  • SpringBoot 消息队列RabbitMQ消息的可靠性 配置连接重试 生产者重连
  • 医学数据分析实训 项目三 关联规则分析作业--在线购物车分析--痹症方剂用药规律分析
  • 科技赋能司法:易保全如何重塑法律文书签署与庭审流程
  • yjs07——numpy数组的使用
  • 【Linux】-基本指令(上)
  • 7-16 一元多项式求导(vector)
  • Linux - iptables防火墙
  • 安全、稳定、高速的跨国文件传输系统
  • Vue3 : ref 与 reactive
  • 【DataSophon】Yarn配置历史服务器JobHistory和Spark集成historyServer
  • 【C++】list常见用法
  • 数据库基础(MySQL)
  • 【C++】——string类的模拟实现
  • 【网络】DNS,域名解析系统
  • Vue Application exit (SharedArrayBuffer is not defined)
  • 数据结构与算法-17高级数据结构_图论(迪杰斯特拉算法)
  • 5分钟熟练上手ES的具体使用
  • Python数据分析-Steam 收入排名前 1500 的游戏
  • 克隆虚拟机,xshell无法传文件,windows无法ping克隆虚拟机,已解决