当前位置: 首页 > article >正文

openCV3.0 C++ 学习笔记补充(自用 代码+注释)---持续更新 三(61-)

环境:OpenCV3.2.0 + VS2017

61、轮廓集合重排序(按轮廓面积从小到大)

//对轮廓集合面积从大到小排序
bool compareValue_bs(const std::vector<cv::Point> & c1, const std::vector<cv::Point> & c2)
{
	int area1 = cv::contourArea(c1);
	int area2 = cv::contourArea(c2);
	return area1 > area2;
}
	std::vector<std::vector<cv::Point>> ENDcontour;
	std::vector<std::vector<cv::Point>> contours;
	std::vector<cv::Vec4i> hierarchy;
	std::vector<std::vector<cv::Point>>::iterator k;    //迭代器,访问容器数据
	cv::findContours(thresholdMat, contours, hierarchy, cv::RETR_EXTERNAL, CV_RETR_LIST); //查找外轮廓,压缩存储轮廓点

	std::sort(contours.begin(), contours.end(), compareValue_bs);
排序前
排序后

62、只删除过小轮廓及挨边轮廓

	bool deleteSmallMat(cv::Mat thresholdMat, cv::Mat &resMat, int minSize = 30, bool debug = false);
bool PlaneRec::deleteSmallMat(cv::Mat thresholdMat, cv::Mat &resMat, int minSize, bool debug)
{
	thresholdMat.copyTo(resMat);

	std::vector<cv::Rect> boundRect;
	std::vector<cv::RotatedRect> minRect;
	cv::Mat visual_bR;
	if (debug) thresholdMat.copyTo(visual_bR);
	if (visual_bR.type() != CV_8UC3) cv::cvtColor(visual_bR, visual_bR, cv::COLOR_GRAY2BGR);

	std::vector<std::vector<cv::Point>> ENDcontour;
	std::vector<std::vector<cv::Point>> contours;
	std::vector<cv::Vec4i> hierarchy;
	std::vector<std::vector<cv::Point>>::iterator k;    //迭代器,访问容器数据
	cv::findContours(thresholdMat, contours, hierarchy, cv::RETR_EXTERNAL, CV_RETR_LIST); //查找外轮廓,压缩存储轮廓点
	std::sort(contours.begin(), contours.end(), compareValue_bs);

	if (debug) printf("\n\n\n\n\n");
	if (contours.size() <= 0)//图为全黑时
	{
		std::cout << __FUNCTION__ << "cons.size() <= 0";
		//return false;
	}
	if (debug) printf("图像处理后 检测到的轮廓数 cons.size() = %d  \n", contours.size());
	int remainNum = 0;//剩余的轮廓数(有重画出来的轮廓数)
	cv::Mat  tmpMat = cv::Mat(thresholdMat.rows, thresholdMat.cols, CV_8UC1, cv::Scalar(0, 0, 0));
	//画出轮廓;
	int  count = 0;
	for (k = contours.begin(); k != contours.end(); ++k, count++) //删除小连通域的
	{
		std::vector<cv::Point> curContours = *k;
		if (curContours.size() < minSize) {
			cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
			cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), 2, CV_AA, hierarchy);
			continue;
		}
		remainNum++;

		if (1) {
			int area1 = cv::contourArea(curContours);
			if (debug) cout << __FUNCTION__ << "  count: " << count << ", area1=" << area1 << endl;

		}

		minRect.push_back(cv::minAreaRect(curContours));
		boundRect.push_back(cv::boundingRect(curContours));
		if (debug) cv::rectangle(visual_bR, boundRect[boundRect.size() - 1].tl(), boundRect[boundRect.size() - 1].br(), cv::Scalar(0, 255, 0), 1);
		if (debug) cv::putText(visual_bR, std::to_string(boundRect.size() - 1), boundRect[boundRect.size() - 1].tl(), cv::FONT_HERSHEY_COMPLEX, 0.45, cv::Scalar(255, 135, 160), 1);
		if (debug) cv::putText(visual_bR, std::to_string(boundRect.size() - 1), boundRect[boundRect.size() - 1].br(), cv::FONT_HERSHEY_COMPLEX, 0.45, cv::Scalar(255, 135, 160), 1);
		if (debug) cv::drawContours(visual_bR, contours, count, cv::Scalar(255, 135, 160), -1, CV_AA, hierarchy);
		if (debug) {
			cv::circle(visual_bR, minRect.at(minRect.size() - 1).center, 3, cv::Scalar(0, 0, 255), -1, 8);  //绘制最小外接矩形的中心点
			cv::Point2f rect[4];
			minRect.at(minRect.size() - 1).points(rect);  //把最小外接矩形四个端点复制给rect数组
			for (int j = 0; j < 4; j++) {
				cv::line(visual_bR, rect[j], rect[(j + 1) % 4], cv::Scalar(0, 0, 255), 1, 8);  //绘制最小外接矩形每条边
			}
		}
		//if (boundRect.at(boundRect.size() - 1).height < src.rows / 5) continue;//轮廓是长度比图像的1/5短则直接过掉

		if (boundRect.size() > 0) {
			cv::Rect curBR = boundRect.at(boundRect.size() - 1);
			cv::RotatedRect curMR = minRect.at(minRect.size() - 1);
			double whRatio = curBR.width*1.0 / curBR.height;//宽高比
			double longMR = curMR.size.width;
			double shortMR = curMR.size.height;
			longMR = curMR.size.width > curMR.size.height ? curMR.size.width : curMR.size.height;
			shortMR = curMR.size.width < curMR.size.height ? curMR.size.width : curMR.size.height;
			double wh_MR_Ratio = longMR * 1.0 / shortMR;//非垂直的外接矩形框的长边短边比
			int area = cv::contourArea(curContours);
			double curS_tect = longMR * shortMR;//非垂直最小外接矩形面积
			double aRetio = area / curS_tect;//轮廓本身与非垂直最小外接矩形的面积比值
			if (shortMR <= 10) {
				cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
				cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), 2, CV_AA, hierarchy);
				continue;
			}
			if (curBR.x == 0 ||
				curBR.y == 0 ||
				curBR.x + curBR.width >= thresholdMat.cols ||
				curBR.y + curBR.height >= thresholdMat.rows) {
				cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
				cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), 2, CV_AA, hierarchy);
				continue;//挨边的删掉
			}
			if (debug) printf("area = %d, curS_rect=%lf, aRetio=%lf  \n", area, curS_tect, aRetio);
			if (aRetio >= 0.9) {
				//continue;
			}
			if (debug) cout << "--- curBR_" << boundRect.size() - 1 << curBR << whRatio << "\t";
			if (debug) cout << "   \tMR.angle=" << curMR.angle << "          \t, MR.center=" << curMR.center << "    \t, MR.points=" << curMR.size << ", wh_MR_Ratio" << wh_MR_Ratio << endl;
			//if (whRatio > 1) continue;//宽高比不满足要求的直接 continue
		}

		ENDcontour.push_back(curContours);
		cv::drawContours(tmpMat, contours, count, cv::Scalar(255, 255, 255), -1, CV_AA, hierarchy);
	}
	if (debug) cv::namedWindow("visual_bR222", cv::NORMCONV_FILTER);
	if (debug) cv::imshow("visual_bR222", visual_bR);
	if (debug) cv::imshow("tmpMat222", tmpMat);

	//tmpMat.copyTo(resMat);
	return true;
}
	deleteSmallMat(thresholdMat, thresholdMat, 30, debug);

63、获取轮廓点集

初始版:

		std::vector<cv::Point> curContours = *k;
		cv::Mat  curMat = cv::Mat(thresholdMat.rows, thresholdMat.cols, CV_8UC1, cv::Scalar(0, 0, 0));

		float peri = cv::arcLength(curContours, true);
		cv::approxPolyDP(curContours, conPoly[count], 0.02 * peri, true);

		cv::drawContours(curMat, contours, count, cv::Scalar(255, 255, 255), -1,cv::LINE_8, hierarchy);
		if (debug)cv::namedWindow("curMat", cv::NORMCONV_FILTER);
		if (debug) cv::imshow("curMat", curMat);

		if (1) {
			//找白的,白占比大于  才认为是小圆角
			cv::Mat imgReadOriPv;//原图上轮廓的对应位置
			imgGray.copyTo(imgReadOriPv, curMat);
			if (debug) cv::imshow("imgReadOriPv", imgReadOriPv);
			cv::threshold(imgMark, imgMark, 105, 255, cv::THRESH_BINARY);

			cv::Mat open;
			int tempk = 3;

			cv::Mat imgDil;
			cv::dilate(curMat, imgDil, cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(tempk, tempk)));
			if (debug)cv::namedWindow("dilate-WriteMat2", cv::NORMCONV_FILTER);
			if (debug) cv::imshow("dilate-WriteMat2", imgDil);
			//cv::erode(dil, open, cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(tempk, tempk)));
			imgDil.copyTo(open);

			open = open ^ curMat;
			//if (debug)cv::namedWindow("open-WriteMat2", cv::NORMCONV_FILTER);
			//if (debug) cv::imshow("open-WriteMat2", open);
			cv::threshold(open, open, 254, 255, cv::THRESH_BINARY);
			if (debug)cv::namedWindow("imgConEdge-WriteMat3", cv::NORMCONV_FILTER);
			if (debug) cv::imshow("imgConEdge-WriteMat3", open);//膨胀后减原轮廓只余下轮廓外圈,以获取边缘点集


			cv::Point startPnt = curContours[0];//第一个点
			for (int row = 0; row < open.rows; row++) {
				for (int col = 0; col < open.cols; col++) {
					cv::Point curp = cv::Point(col, row);
					if (open.at<uchar>(curp) >= 205) {
						startPnt = curp;
						break;
					}
				}
			}
			//if (debug) cout << "----------------- open.size()=" << open.size() << ", startPnt" << startPnt << endl;
			//if (debug) circle(open, startPnt, 2, cv::Scalar(0, 0, 0), cv::FILLED);
			if (1) {//轮廓完整点集 //为了测试轮廓形态对比 先原图像素值判定0914cxl
				vector<cv::Point> conPntLst;
				cv::Mat imgFindPnt;
				curMat.copyTo(imgFindPnt);
				cv::Mat imgFound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
				getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
				//if (debug) cout << "-----------------conPntLst.size()=" << conPntLst.size() << endl;
				if (debug) cv::imshow("imgFound", imgFound);
				if (0) {//可视化
					cv::Mat imgF111ound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
                    if (debug) circle(imgF111ound, startPnt, 2, cv::Scalar(255, 255, 255), cv::FILLED);
					for (cv::Point curp : conPntLst) {
						if (debug) cout << "*** startPnt=" << curp << endl;
						imgFindPnt.at<uchar>(curp) = 0;
						if (debug) cv::imshow("visual_conPntLst", imgFindPnt);
						imgF111ound.at<uchar>(curp) = 255;
						if (debug) cv::imshow("img--------------ound", imgF111ound);
						//if (debug) cv::waitKey(51);
					}
				}
				double avgPv = 0;
				for (cv::Point curp : conPntLst) {
					int pv = imgReadOriPv.at<uchar>(curp);
					avgPv += pv;
				}
				avgPv /= conPntLst.size();
				if (debug) cout << "-----------------avgPv=" << avgPv << endl;
				if (avgPv <= 200) {//轮廓对应原图上不够白的小轮廓,认为不是小圆角
					cv::drawContours(thresholdMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
					cv::drawContours(thresholdMat, contours, count, cv::Scalar(0, 0, 0), 3, CV_AA, hierarchy);
					continue;
					//不要了
				}
			}
			if (0) {//轮廓外边缘点集
				//cv::Mat  newMat = cv::Mat(thresholdMat.rows, thresholdMat.cols, CV_8UC1, cv::Scalar(0, 0, 0));
				//drawContours(newMat, conPoly, count, cv::Scalar(255, 255, 255), 1);
				//drawContours(open, conPoly, count, cv::Scalar(255, 255, 255), 1);

				vector<cv::Point> conPntLst;
				cv::Mat imgFindPnt;
				open.copyTo(imgFindPnt);
				//newMat.copyTo(imgFindPnt);
				cv::Mat imgFound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
				getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
				if (debug) cout << "-----------------conPntAllLst.size()=" << conPntLst.size() << endl;
				if (debug) cv::imshow("imgFound", imgFound);
				if (1) {//可视化
					cv::Mat imgF111ound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
					if (debug) circle(imgF111ound, startPnt, 1, cv::Scalar(255, 255, 255), cv::FILLED);
					for (cv::Point curp : conPntLst) {
						if (debug) cout << "*** startPnt=" << curp << endl;
						imgFindPnt.at<uchar>(curp) = 0;
						if (debug) cv::imshow("visual_conPntLst", imgFindPnt);
						imgF111ound.at<uchar>(curp) = 255;
						if (debug) cv::imshow("img--------------ound", imgF111ound);
						if (debug) cv::waitKey(51);
					}
				}
				if (1) {
					std::vector<double> resList;
					int res = getAngleChange(conPntLst, resList);
					for (int i = 0; i < resList.size(); ++i) {
						if (debug) std::cout << resList[i] / (2.0*PI) * 360 << " -> ";
					}
					std::vector<double> trend;
					trend = get_trendList(resList, 1, debug);
					resList = trend;
					if (1) {
						int smoothCnt = 2;
						std::vector<double> newWLst = resList;
						int curCnt = smoothCnt;
						while (curCnt--) {
							linearSmooth3(newWLst, newWLst, 1);
						}
						resList = newWLst;
					}
					if (1) {
						if (debug) printf("disList.size()= %d \n", resList.size());
						float mean, variance, standard_deviation;
						get_meanCorrelationTest(resList, mean, variance, standard_deviation);
						if (debug) printf("disList 均值: %f  \n", mean); // 均值
						if (debug) printf("disList 方差: %f  \n", variance); // 方差
						if (debug) printf("disList 标准差: %f  \n\n", standard_deviation); // 标准差
					}
					if (debug) showLine(resList);
				}
			}//轮廓外边缘点集
		}

64、获取满足阈值的连通域点集(深搜,顺时针搜索存入)

/*
//以深搜的方式,顺时针方向获取轮廓外边缘点集
#include <stack> 
cv::Mat& src, cv::Mat& matDst, 搜索结果可视化标识
vector<cv::Point> &conPntLst, 获取到的轮廓边缘点集
cv::Point2i startPnt, 起始种子点
int th,像素值大于该值才被认为是轮廓部分
*/
void getPntLst_dfs_clockwise(cv::Mat& src, cv::Mat& matDst, vector<cv::Point> &conPntLst, cv::Point2i startPnt, int th)
{
	//cout << __FUNCTION__ << " conPntLst.size()=" << conPntLst.size() << ", startPnt" << startPnt << endl;
	stack<cv::Point> ptStack;//种子点队列

	//搜索方向顺序数据
	int DIR[8][2] = { { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 } };//从上往右顺时针搜
	ptStack.push(startPnt);//起始种子点入栈
	conPntLst.clear();
	while (!ptStack.empty()) {
		cv::Point curp = ptStack.top();
		ptStack.pop();
		conPntLst.push_back(curp);
		//分别对八个方向上的点进行生长
		for (int i = 0; i < 8; ++i) {
			cv::Point tmpp;
			tmpp.x = curp.x + DIR[i][0];
			tmpp.y = curp.y + DIR[i][1];
			//检查是否是边缘点
			if (tmpp.x < 0 ||
				tmpp.y < 0 ||
				tmpp.x > (src.cols - 1) ||
				tmpp.y > (src.rows - 1)) {
				continue;
			}
			int nGrowLable = matDst.at<uchar>(tmpp.y, tmpp.x);	//是否已搜过
			if (nGrowLable == 0) {//未搜过
				int nCurValue = src.at<uchar>(tmpp.y, tmpp.x);//是否属于轮廓
				if (nCurValue >= th) {//属于轮廓
					matDst.at<uchar>(tmpp.y, tmpp.x) = 255;	//标记为已搜过

					ptStack.push(tmpp);
				}
			}
		}
	}
}

调用示例:

    cv::Point startPnt = curContours[0];//起始第一个点
    for (int row = 0; row < open.rows; row++) {
        for (int col = 0; col < open.cols; col++) {
            cv::Point curp = cv::Point(col, row);
            if (open.at<uchar>(curp) >= 205) {
                startPnt = curp;
                break;
            }
        }
    }
    vector<cv::Point> conPntLst;
    cv::Mat imgFindPnt;
    open.copyTo(imgFindPnt);
    //newMat.copyTo(imgFindPnt);
    cv::Mat imgFound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
    getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
    if (debug) cout << "-----------------conPntAllLst.size()=" << conPntLst.size() << endl;
    if (debug) cv::imshow("imgFound", imgFound);
    if (1) {//可视化(点集及其存入顺序)
        cv::Mat imgF111ound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
        if (debug) circle(imgF111ound, startPnt, 2, cv::Scalar(255, 255, 255), cv::FILLED);
        for (cv::Point curp : conPntLst) {
            if (debug) cout << "*** startPnt=" << curp << endl;
            imgFindPnt.at<uchar>(curp) = 0;
            if (debug) cv::imshow("visual_conPntLst", imgFindPnt);
            imgF111ound.at<uchar>(curp) = 255;
            if (debug) cv::imshow("img--------------ound", imgF111ound);
            if (debug) cv::waitKey(51);
        }
    }

65、从轮廓中获取所需点集(轮廓外边缘点集/轮廓完整点集)

/*
//从轮廓中获取所需点集(轮廓外边缘点集/轮廓完整点集)
cv::Mat imgOriginal, 提供图像尺寸大小
std::vector<cv::Point> curContour, 依据轮廓
cv::Mat& matDst, 搜索结果可视化标识
vector<cv::Point> &conPntLst, 获取到的轮廓边缘点集(第一个点是图像最上的轮廓白点)
int mode, 模式:0为获取轮廓外边缘点集(以顺时针沿外边缘的顺序存入),1为获取轮廓完整点集
*/
void getPntLst_fromContour(cv::Mat imgOriginal, std::vector<cv::Point> curContour, cv::Mat& imgFound, vector<cv::Point> &conPntLst, int mode = 1, bool debug = false);
/*
//从轮廓中获取所需点集(轮廓外边缘点集/轮廓完整点集)
cv::Mat imgOriginal, 提供图像尺寸大小
std::vector<cv::Point> curContour, 依据轮廓
cv::Mat& matDst, 搜索结果可视化标识
vector<cv::Point> &conPntLst, 获取到的轮廓边缘点集(第一个点是图像最上的轮廓白点)
int mode, 模式:0为获取轮廓外边缘点集(以顺时针沿外边缘的顺序存入),1为获取轮廓完整点集
*/
void getPntLst_fromContour(cv::Mat imgOriginal, std::vector<cv::Point> curContour, cv::Mat& imgFound, vector<cv::Point> &conPntLst, int mode, bool debug) 
{
	if (curContour.empty()) return;

	imgFound = cv::Mat::zeros(imgOriginal.size(), CV_8UC1);

	std::vector<cv::Point> curContours = curContour;
	cv::Mat  curMat = cv::Mat(imgOriginal.rows, imgOriginal.cols, CV_8UC1, cv::Scalar(0, 0, 0));//当前轮廓
	std::vector<std::vector<cv::Point>> contours;
	contours.push_back(curContours);
	cv::drawContours(curMat, contours, 0, cv::Scalar(255, 255, 255), -1, cv::LINE_8);
	if (debug)cv::namedWindow("curMat", cv::NORMCONV_FILTER);
	if (debug) cv::imshow("curMat", curMat);

	cv::Mat imgFindPnt;
	curMat.copyTo(imgFindPnt);
	if (mode == 0) {
		cv::Mat imgConEdge;//轮廓外边缘
		if (0) {
			//实验证明用形态学梯度回导致轮廓边缘有两层点集
			cv::morphologyEx(curMat, imgConEdge, cv::MORPH_GRADIENT, cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(3, 3)));
		}
		else {
			//为了使轮廓边缘只余一层点集,选择用膨胀后与原图取异或
			cv::Mat imgDil;
			int tempk = 3;
			cv::dilate(curMat, imgDil, cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(tempk, tempk)));
			if (debug)cv::namedWindow("dilate-ConEdge", cv::NORMCONV_FILTER);
			if (debug) cv::imshow("dilate-ConEdge", imgDil);
			imgDil.copyTo(imgConEdge);
			imgConEdge = imgConEdge ^ curMat;
			cv::threshold(imgConEdge, imgConEdge, 254, 255, cv::THRESH_BINARY);
		}
		if (debug)cv::namedWindow("imgConEdge", cv::NORMCONV_FILTER);
		if (debug) cv::imshow("imgConEdge", imgConEdge);//膨胀后减原轮廓只余下轮廓外圈,以获取边缘点集
		imgConEdge.copyTo(imgFindPnt);
	}
	else if (mode == 1) {
		curMat.copyTo(imgFindPnt);
	}

	cv::Point startPnt = curContours[0];//第一个点
	for (int row = 0; row < imgFindPnt.rows; row++) {
		for (int col = 0; col < imgFindPnt.cols; col++) {
			cv::Point curp = cv::Point(col, row);
			if (imgFindPnt.at<uchar>(curp) >= 205) {
				startPnt = curp;
				break;
			}
		}
	}
	//if (debug) cout << "----------------- imgFindPnt.size()=" << imgFindPnt.size() << ", startPnt" << startPnt << endl;
	//if (debug) circle(open, startPnt, 2, cv::Scalar(0, 0, 0), cv::FILLED);

	getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
	//if (debug) cout << "-----------------conPntLst.size()=" << conPntLst.size() << endl;
	if (debug) cv::imshow("imgFound", imgFound);
	if (0) {//可视化(点集及其存入顺序)
		cv::Mat imgF111ound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
		if (debug) circle(imgF111ound, startPnt, 1, cv::Scalar(255, 255, 255), cv::FILLED);
		for (cv::Point curp : conPntLst) {
			if (debug) cout << "*** startPnt=" << curp << endl;
			imgFindPnt.at<uchar>(curp) = 0;
			if (debug) cv::imshow("visual_conPntLst", imgFindPnt);
			imgF111ound.at<uchar>(curp) = 255;
			if (debug) cv::imshow("img--------------ound", imgF111ound);
			if (debug) cv::waitKey(51);
		}
	}
}

调用示例:

    //轮廓完整点集
	vector<cv::Point> conPntLst;
	cv::Mat imgFound;
	getPntLst_fromContour(imgOriginal, curContours, imgFound, conPntLst, 1, debug);

	//找白的,白占比大于  才认为是小圆角
	cv::Mat imgReadOriPv;//原图上轮廓的对应位置
	imgGray.copyTo(imgReadOriPv, curMat);
	if (debug) cv::imshow("imgReadOriPv", imgReadOriPv);
	double avgPv = 0;
	for (cv::Point curp : conPntLst) {
		int pv = imgReadOriPv.at<uchar>(curp);
		avgPv += pv;
	}
	avgPv /= conPntLst.size();
	if (debug) cout << "-----------------avgPv=" << avgPv << endl;
	if (avgPv <= 200) {//轮廓对应原图上不够白的小轮廓,认为不是小圆角
		cv::drawContours(thresholdMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
		cv::drawContours(thresholdMat, contours, count, cv::Scalar(0, 0, 0), 3, CV_AA, hierarchy);
		continue;
		//不要了
	}
    //轮廓外边缘点集
	vector<cv::Point> conPntLst;
	cv::Mat imgFound;
	getPntLst_fromContour(imgOriginal, curContours, imgFound, conPntLst, 0, debug);
	if (1) {
		std::vector<double> resList;
		int res = getAngleChange(conPntLst, resList);
		for (int i = 0; i < resList.size(); ++i) {
			if (debug) std::cout << resList[i] / (2.0*PI) * 360 << " -> ";
		}
		std::vector<double> trend;
		trend = get_trendList(resList, 1, debug);
		resList = trend;
		if (1) {
			int smoothCnt = 2;
			std::vector<double> newWLst = resList;
			int curCnt = smoothCnt;
			while (curCnt--) {
				linearSmooth3(newWLst, newWLst, 1);
			}
			resList = newWLst;
		}
		if (1) {
			if (debug) printf("disList.size()= %d \n", resList.size());
			float mean, variance, standard_deviation;
			get_meanCorrelationTest(resList, mean, variance, standard_deviation);
			if (debug) printf("disList 均值: %f  \n", mean); // 均值
			if (debug) printf("disList 方差: %f  \n", variance); // 方差
			if (debug) printf("disList 标准差: %f  \n\n", standard_deviation); // 标准差
		}
		if (debug) showLine(resList);
	static void showLine(std::vector<double>posList, bool debug = false);

void PlaneRec::showLine(std::vector<double> posList, bool debug)
{
	if (posList.size() < 2) {
		return;
	}
	int maxVar = 360 + 1;
	int minVar = -360 - 1;
	cv::Mat canva = cv::Mat::zeros(cv::Size(posList.size()*10 + 1, maxVar - minVar), CV_8UC3);

	cv::Point startPos(0,(int)posList[0] / (2.0*PI) * 360 + maxVar);
	for (int i = 1; i < posList.size(); ++i) {
		double tmp = posList[i] / (2.0*PI) * 360 + maxVar;
		cv::Point posEnd(i*10, (int)tmp);
		//canva.at<cv::Vec3b>(posEnd) = cv::Vec3b(255, 255, 255);
		cv::line(canva, startPos, posEnd, cv::Scalar(255,255,255), 3, 8);
		startPos = posEnd;
	}
	if (debug) cv::namedWindow("showLine", cv::NORMCONV_FILTER);
	if (debug) cv::imshow("showLine", canva);
}

66、删除轮廓(不再会误删被包围在中间的内圈小轮廓)

前提:

直接轮廓查找后,利用cv::drawContours()涂黑。

	//cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), -1, CV_AA, hierarchy);
	//cv::drawContours(resMat, contours, count, cv::Scalar(0, 0, 0), 2, CV_AA, hierarchy);

一旦出现:需要删除的轮廓中 完整包含着 不需要删除的小轮廓 在其内圈,

则会在删除的同时将小轮廓也一起误删。

为避免这种情况,则需按连通域来进行删除。操作如下:

1)获取待删除轮廓对应的连通域,即其完整轮廓点集。

2)然后一个点一个点地去进行涂黑删除。

即可。

如此则不会误删其包含在内部的小轮廓。

	for (k = contours.begin(); k != contours.end(); ++k, count++) //删除小连通域的
	{
		std::vector<cv::Point> curContours = *k;
	    cv::Mat curMat = cv::Mat(imgOriginal.rows, imgOriginal.cols, CV_8UC1, cv::Scalar(0, 0, 0));//当前轮廓
	    cv::drawContours(curMat, contours, count, cv::Scalar(255, 255, 255), -1, cv::LINE_8);
		vector<cv::Point> conPntAllLst;//轮廓完整点集 
		if (1) {//以便将连通域位置删除而不会误删大轮廓包含在内的小轮廓
			cv::Mat imgFindPnt;
			curMat.copyTo(imgFindPnt);
			cv::Mat imgFound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);

			cv::Point startPnt = curContours[0];//第一个点
			getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntAllLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
			//if (debug) cout << "-----------------conPntLst.size()=" << conPntLst.size() << endl;
			if (debug) cv::imshow("imgFound", imgFound);
			if (0) {//可视化
				cv::Mat imgF111ound = cv::Mat::zeros(thresholdMat.size(), CV_8UC1);
				for (cv::Point curp : conPntAllLst) {
					if (debug) cout << "*** startPnt=" << curp << endl;
					thresholdMat.at<uchar>(curp) = 0;
					if (debug) cv::imshow("visual_conPntLst", thresholdMat);
					imgF111ound.at<uchar>(curp) = 255;
					if (debug) circle(imgF111ound, startPnt, 2, cv::Scalar(255, 255, 255), cv::FILLED);
					if (debug) cv::imshow("img--------------ound", imgF111ound);
					//if (debug) cv::waitKey(51);
				}
			}
		}

        //需要删除的轮廓,则轮廓对应位置涂黑
		for (cv::Point curp : conPntAllLst) {
			resMat.at<uchar>(curp) = 0;//轮廓对应位置涂黑
		}
    }

拓展:改一下画轮廓的方式

	if (0) {
		cv::drawContours(tmpMat, contours, i, cv::Scalar(255, 255, 255), -1, CV_AA, hierarchy);
	}
	else {
		//改一下画轮廓的方式
		vector<cv::Point> conPntAllLst;//轮廓完整点集 
		if (1) {//以便将连通域位置删除而不会误删大轮廓包含在内的小轮廓
			cv::Mat imgFindPnt;
			thresholdMat.copyTo(imgFindPnt);
			cv::Mat imgFound = cv::Mat::zeros(imgFindPnt.size(), CV_8UC1);
			cv::Point startPnt = curContours[0];//第一个点
			getPntLst_dfs_clockwise(imgFindPnt, imgFound, conPntAllLst, startPnt, 140);//以顺时针沿外边缘的顺序存入
			//if (debug) cout << "-----------------conPntLst.size()=" << conPntLst.size() << endl;
			if (debug) cv::imshow("imgFound", imgFound);
			if (0) {//可视化
				cv::Mat imgF111ound = cv::Mat::zeros(thresholdMat.size(), CV_8UC1);
				for (cv::Point curp : conPntAllLst) {
					if (debug) cout << "*** startPnt=" << curp << endl;
					thresholdMat.at<uchar>(curp) = 0;
					if (debug) cv::imshow("visual_conPntLst", thresholdMat);
					imgF111ound.at<uchar>(curp) = 255;
					if (debug) circle(imgF111ound, startPnt, 2, cv::Scalar(255, 255, 255), cv::FILLED);
					if (debug) cv::imshow("img--------------ound", imgF111ound);
					//if (debug) cv::waitKey(51);
				}
			}
		}
		for (cv::Point curp : conPntAllLst) tmpMat.at<uchar>(curp) = 255;//轮廓对应位置涂白
	}

 

67、


http://www.kler.cn/a/313095.html

相关文章:

  • ChatGPT大模型极简应用开发-CH2-深入了解 GPT-4 和 ChatGPT 的 API
  • 禁止 iOS 系统浏览器双指放大页面
  • (长期更新)《零基础入门 ArcGIS(ArcMap) 》实验六----流域综合处理(超超超详细!!!)
  • 行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
  • linux下使用脚本实现对进程的内存占用自动化监测
  • 简识JVM私有内存区域栈、数据结构
  • Hexo博客私有部署Twikoo评论系统并迁移评论记录(自定义邮件回复模板)
  • Pandas中df常用方法介绍
  • MATLAB画图,曲线图如何绘制美观,曲线图10种美化方法
  • Python 异常控制详解:try-except 的应用与多种异常处理策略
  • QEMU 运行Win11 成功的例子
  • OpenCVHaar级联器实现人脸捕捉和微笑检测
  • 煤矿智慧矿井数据集 (1.煤矿采掘工作面智能分析数据集2.煤矿井下钻场智能分析数据集 )
  • en造数据结构与算法C# 群组行为优化 和 头鸟控制
  • Flink 中 Checkpoint 的底层原理和机制
  • Java客户端SpringDataRedis(RedisTemplate使用)
  • Neko一个在Docker环境下的虚拟浏览器
  • 大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示
  • Day69补 前后端分离思想
  • JAVA毕业设计176—基于Java+Springboot+vue3的交通旅游订票管理系统(源代码+数据库)
  • 【HTML5】html5开篇基础(1)
  • 【学习笔记】数据结构(六 ①)
  • 通过markdown表格批量生成格式化的word教学单元设计表格
  • 基于深度学习的花卉智能分类识别系统
  • 【win工具】win安装flameshot并设置截图快捷键
  • 【Python报错已解决】xlrd.biffh.XLRDError: Excel xlsx file; not supported