当前位置: 首页 > article >正文

NLP 文本分类核心问题

解决思路

  • 分解为多个独立二分类任务
  • 将多标签分类转化为多分类问题
  • 更换 loss 直接由模型进行多标签分类

数据稀疏问题

标注更多数据,核心解决方案:

  • 自己构造训练样本
    数据增强,如使用 chatGPT 来构造数据
  • 更换模型
    减少数据需求
  • 增加规则弥补
  • 调整阀值,用召回率替换准确率
  • 重新定义类别(类别合并)

标签不均衡问题

  • 过采样
    复制指定类别样本,在采样中重复
  • 降采样
    减少多样本类别的采样,随机使用部分样本
  • 增加标注数据
  • 调整样本权重
    调整损失函数的权重
  • 非神经网络的方法
    • 贝叶斯
      • 全概率公式
        在这里插入图片描述
      • 贝叶斯公式
        在这里插入图片描述
        • 核心在于词频的统计
        • 需要做词的独立性假设,形成每个事件在某个事件下发生概率的相乘
          这种假设是没有保障的,需要加一平滑等策略,保证概率不为0,没有考虑语序,没有词义。在这里插入图片描述
      • 适用于样本分布较均衡的语料
        • 简单高效
        • 训练结果有一定的可解释性
        • 训练数据可以分批处理
    • SVM 支持向量机
      • 找到一个决策边界
        • 即一条直线、平面或超平面
          • 实现数据的线性可分
        • 距离两个类别最近的样本距离最远
      • 是非线性不可分的
        • 可以通过使用特别的映射关系,将数据映射到高维解决
        • 通过核函数解决高维度计算耗时问题
      • 主要靠核函数寻找决策边界
      • 没有像贝叶斯很好的可解释性,没有神经网络的效果好
  • 神经网络方法
    • fastText
      • 结构简单
        1. embedding
        2. mean pooling
        3. fc -> class_num
      • 参数少,所以效果不会很好
        抛弃了语序信息
    • TextCNN
      对位相乘再相加,是有语序信息的,可以堆叠多层使用。
      • 分类
        • LSTM
        • GRU
    • Gated CNN
      在这里插入图片描述
      • 过滤 AB 相乘后为 0 部分
      • 放缩 B 中在 0-1 的部分
    • Bert
      实现方式:
      1. 取[cls] token 对应的向量
      2. 将整句话的向量取 max/average pooling
      3. 将 bert 编码后的向量再输入 LSTM 或者 CNN
      4. 将bert 中间层的结果取出,加入运算
    • Bert + RNN 或 CNN
      由于Bert 权重不是随机的,RNN 或 CNN 权重随机,为防止Bert 权重失去意义,RNN 最多一层或双向,或 CNN 最多 2-3 层。
    • 拓展
      • 对比学习
      • 海量向量查找
        • 向量数据库
          Annoy
          在多个接近的分支上查找
        • KD 树
          实现空间分割,局部对比
          均方差
          中位数
    • 目的
      预设文文本所属的类别

http://www.kler.cn/a/314754.html

相关文章:

  • const限定符-C语言中指针的“可变与不可变”法则
  • 软件测试项目实战
  • C++ QT 工具日志异步分批保存
  • wordpress搭建主题可配置json
  • git status 命令卡顿的排查
  • 学习方法——看差的书籍
  • LangChain教程 - 构建一个检索增强生成 (RAG) 应用程序
  • 面试金典题8
  • go webapi上传文件
  • 【Linux】Docker:离线主机部署
  • 【Temporal】日志打印控制
  • 【AI视频】AI虚拟主播制作网站推荐
  • 深度学习02-pytorch-06-张量的形状操作
  • 基于深度学习的智能电网优化
  • Java异常架构与异常关键字
  • Spring后端直接用枚举类接收参数,自定义通用枚举类反序列化器
  • IT行业:未来发展的无限可能
  • 【医学半监督】置信度指导遮蔽学习的半监督医学图像分割
  • 51单片机-系列-数码管中断和定时器
  • Lsposed Java HOOK原理及检测
  • 我的AI工具箱Tauri版-VideoIntroductionClipCut视频介绍混剪
  • Nacos与Eureka的区别:深入解析微服务中的服务注册与发现
  • npm切换为淘宝镜像源
  • GPU加速生物信息分析的尝试
  • 数据结构之存储位置
  • AIGC专栏15——CogVideoX-Fun详解 支持图文生视频 拓展CogVideoX到256~1024任意分辨率生成