当前位置: 首页 > article >正文

T4—猴痘识别

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

1.导入数据

#设置gpu
from tensorflow import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow  as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
    gpu0 = gpus[0]                                       
    tf.config.experimental.set_memory_growth(gpu0, True)  
    tf.config.set_visible_devices([gpu0],"GPU")
gpus

data_dir="data/45-data/"
data_dir=pathlib.Path(data_dir)

image_count=len(list(data_dir.glob('*/*.jpg')))
print("图片的总数为:",image_count)

Monkeypox=list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[0]))

2.加载数据

batch_size=32
img_height=224
img_width=224

train_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size)

val_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size)

3.数据可视化

class_names=train_ds.class_names
print(class_names)

plt.figure(figsize=(20,10))

for images,labels in train_ds.take(1):
    for i in range(20):
        ax=plt.subplot(5,10,i+1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

4.检查数据

for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

5.配置数据与构建模型

AUTOTUNE=tf.data.AUTOTUNE
train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)

num_classes=2
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), 
    layers.AveragePooling2D((2, 2)),               
    layers.Conv2D(32, (3, 3), activation='relu'),  
    layers.AveragePooling2D((2, 2)),               
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       
    layers.Dense(128, activation='relu'),  
    layers.Dense(num_classes)               
])

model.summary()  

6.编译并训练模型

opt=tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

from tensorflow.keras.callbacks import ModelCheckpoint
epochs=50
checkpointer=ModelCheckpoint('best_model.h5',
                             monitor='val_accuracy',
                             verbose=1,
                             save_weights_only=True)
history=model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer])

7.结果可视化

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

8.预测

model.load_weights('best_model.h5')
from PIL import Image
import numpy as np

img=Image.open("data/45-data/Others/NM15_02_11.jpg")
image=tf.image.resize(img,[img_height,img_width])
img_array=tf.expand_dims(image,0)

predictions=model.predict(img_array)
print("预测结果为:",class_names[np.argmax(predictions)])

总结:

1.shuffle()函数:

首先,Dataset会取所有数据的前buffer_size数据项,填充 buffer,如下图

然后,从buffer中随机选择一条数据输出,比如这里随机选中了item 7,那么bufferitem 7对应的位置就空出来了

然后,从Dataset中顺序选择最新的一条数据填充到buffer中,这里是item 10

然后在从Buffer中随机选择下一条数据输出。

需要说明的是,这里的数据项item,并不只是单单一条真实数据,如果有batch size,则一条数据项item包含了batch size条真实数据。

shuffle是防止数据过拟合的重要手段,然而不当的buffer size,会导致shuffle无意义

2.prefetch() :预取数据,加速运行

    CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态。


http://www.kler.cn/a/314837.html

相关文章:

  • Effective C++读书笔记——item13(使用对象管理资源)
  • 测试开发基础知识2
  • 单元测试MockitoExtension和SpringExtension
  • Flutter:封装一个自用的bottom_picker选择器
  • (七)人工智能进阶之人脸识别:从刷脸支付到智能安防的奥秘,小白都可以入手的MTCNN+Arcface网络
  • springboot + vue+elementUI图片上传流程
  • Qwen2-VL的微调及量化
  • React【1】【ref常用法】
  • 小程序地图展示poi帖子点击可跳转
  • 20240921在友善之臂的NanoPC-T6开发板上使用Rockchip原厂的Android12适配宸芯的数传模块CX6602N
  • 【监控】【Nginx】使用 ELK Stack 监控 Nginx
  • Docker Compose 启动 PostgreSQL 数据库
  • 《在华为交换机上配置防止 ARP 攻击》
  • 一个基于 Tauri、Vite 5、Vue 3 和 TypeScript 构建的即时通讯系统,牛啊牛啊!(附源码)
  • 无人机助力智慧农田除草新模式,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建无人机航拍场景下的农田杂草检测识别系统
  • 分布式变电站电力监控系统
  • EmptyDir-数据存储
  • gis专业怎么选电脑?
  • Elasticsearch 检索优化:停用词的应用
  • 【补充篇】Davinci工具要求的dbc格式
  • Springboot与minio
  • 【百日算法计划】:每日一题,见证成长(016)
  • [数据集][目标检测]文本表格检测数据集VOC+YOLO格式6688张5类别
  • 华为HarmonyOS地图服务 3 - 如何开启和展示“我的位置”?
  • 掌控历史:如何通过Git版本管理工具提升你的开发效率
  • 【记录一下VMware上开虚拟端口映射到公网】