pSort
pSort
题面翻译
题目描述
给定一个长度为 n n n 的数列 { a n } \{a_n\} {an},初始时 { a n } = { 1 , 2 , … , n } \{a_n\} = \{1, 2, \dots, n\} {an}={1,2,…,n}。位置 i i i 上的数可以和位置 i ± d i i \pm d_i i±di 上的数交换。给定一个 1 ∼ n 1 \sim n 1∼n 的全排列,问初始的数列可否交换成给定的形式。
输入格式
第一行一个整数 n n n。
第二行 n n n 个互不相同的整数表示目标数列。
第三行 n n n 个整数表示 d 1 , d 2 , … , d n d_1, d_2, \dots, d_n d1,d2,…,dn。
输出格式
如果能交换到给定样式,输出 YES
,否则输出 NO
。
数据范围
1 ≤ n ≤ 100 1 \le n \le 100 1≤n≤100
题目描述
One day $ n $ cells of some array decided to play the following game. Initially each cell contains a number which is equal to it’s ordinal number (starting from $ 1 $ ). Also each cell determined it’s favourite number. On it’s move $ i $ -th cell can exchange it’s value with the value of some other $ j $ -th cell, if $ |i-j|=d_{i} $ , where $ d_{i} $ is a favourite number of $ i $ -th cell. Cells make moves in any order, the number of moves is unlimited.
The favourite number of each cell will be given to you. You will also be given a permutation of numbers from $ 1 $ to $ n $ . You are to determine whether the game could move to this state.
输入格式
The first line contains positive integer $ n $ ( $ 1<=n<=100 $ ) — the number of cells in the array. The second line contains $ n $ distinct integers from $ 1 $ to $ n $ — permutation. The last line contains $ n $ integers from $ 1 $ to $ n $ — favourite numbers of the cells.
输出格式
If the given state is reachable in the described game, output YES, otherwise NO.
样例 #1
样例输入 #1
5
5 4 3 2 1
1 1 1 1 1
样例输出 #1
YES
样例 #2
样例输入 #2
7
4 3 5 1 2 7 6
4 6 6 1 6 6 1
样例输出 #2
NO
样例 #3
样例输入 #3
7
4 2 5 1 3 7 6
4 6 6 1 6 6 1
样例输出 #3
YES
思路:对于每一个数,想要到达它原来的位置的话,我们应该能够确保它们在一个连通块内,只有这样才能够到达目标位置,因此我们可以想到利用并查集,最后判断i与fa[a[i]]是否一样即可
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int>PII;
const int MOD = 998244353;
const int N = 4e5 + 10;
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
int fa[110];
int a[110];
int d[110];
int finds(int x)
{
if(x != fa[x]) fa[x] = finds(fa[x]);
return fa[x];
}
void un(int x, int y)
{
int o1 = finds(x), o2 = finds(y);
if(o2 != o1)
{
fa[o2] = fa[o1];
}
}
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i ++) fa[i] = i;
for(int i = 1; i <= n; i ++) cin >> a[i];
for(int i = 1; i <= n; i ++) cin >> d[i];
for(int i = 1; i <= n; i ++)
{
if(i > d[i]) un(i, i - d[i]);
if(i + d[i] <= n) un(i, i + d[i]);
}
int f = 0;
for(int i = 1; i <= n; i ++)
{
if(finds(i) != finds(a[i]))
{
f = 1;
break;
}
}
if(f) puts("NO");
else puts("YES");
}