当前位置: 首页 > article >正文

YOLOv10改进,YOLOv10主干网络替换为VanillaNet( CVPR 2023 华为提出的全新轻量化架构),大幅度涨点

在这里插入图片描述

摘要

基础模型的核心理念是“更多即不同”,这一理念在计算机视觉和自然语言处理领域取得了惊人的成功。然而,变压器模型的优化挑战和固有复杂性呼唤一种向简化转变的范式。在本研究中,引入了 VanillaNet,一种拥抱设计优雅的神经网络架构。通过避免高深度、快捷方式和复杂操作如自注意,VanillaNet 设计简洁而功能强大。每一层都精心设计为紧凑和简洁,训练后修剪非线性激活函数以恢复原始架构。VanillaNet 克服了固有的复杂性挑战,非常适合资源受限的环境。其易于理解和高度简化的架构为高效部署开辟了新可能。广泛的实验表明,VanillaNet 在性能上与著名的深度神经网络和视觉变压器相当,展示了极简主义在深度学习中的力量。VanillaNet 的这一愿景之旅具有重新定义基础模型格局和挑战现状的巨大潜力,为优雅和高效的模型设计开辟了新路径。

模型细节:

VanillaNet-6 模型的架构,仅由 6 个卷积层组成,非常容易在任何现代硬件上使用。输入特征的大小在每个阶段都被下采样,而通道数则加倍,这借鉴了经典神经网络如 AlexNet 和 VGGNet 的设计。结构如下图所示:
在这里插入图片描述

该结构通过避免深度、高度复杂的操作(如自注意力机制)和快捷连接,实现了设计上的简洁优雅。以下是 VanillaNet 的不同版本的架构细节:
在这里插入图片描述

  • stem: 初始卷积层,使用 4×4 的卷积核,输出通道数为 512,步幅为 4。
  • stage1: 第一阶段,特征图大小为 56×56,包括一个 1×1 的卷积层,输出通道数为 1024,之后接一个 2×2 的最大池化层。
  • stage2: 第二阶段,特征图大小为 28×28,包括一个 1×1 的卷积层,输出通道数为 2048,之后接一个 2×2 的最大池化层。
  • stage3: 第三阶段,特征图大小为 14×14,包括一个或多个 1×1 的卷积层,输出通道数为 4096,之后接一个 2×2 的最大池化层。层数根据不同版本的 VanillaNet 变化(如 VanillaNet-7 有 1 层,VanillaNet-8 有 2 层,以此类推)。
  • stage4: 第四阶段,特征图大小为 7×7,包括一个 1×1 的卷积层,输出通道数为 4096。
    classifier: 分类器部分,首先是一个 7×7 的平均池化层,然后是一个 1×1 的卷积层,输出通道数为 1000(对应 ImageNet 的 1000 个分类)。
  • 上表中列出了不同版本的 VanillaNet 的详细架构。对于 VanillaNet-13-1.5×,所有卷积层的通道数乘以 1.5。对于 VanillaNet-13-1.5׆,在 stage2、stage3 和 stage4 采用了自适应池化,特征图大小分别调整为 40×40、20×20 和 10×10。

官网表显示了使用不同网络在ImageNet数据集上的分类结果。列出了参数数量、FLOPs、深度、GPU 延迟和准确性以进行比较。在过去的几十年里,研究人员专注于在 ARM/CPU 上最小化 FLOPs 或延迟&


http://www.kler.cn/a/318659.html

相关文章:

  • 设计模式之工厂模式,但是宝可梦
  • 大数据新视界 -- 大数据大厂之 Impala 存储格式转换:从原理到实践,开启大数据性能优化星际之旅(下)(20/30)
  • C++编程技巧与规范-类和对象
  • MySQL技巧之跨服务器数据查询:进阶篇-从A数据库复制到B数据库的表中
  • 封装el-menu
  • GaussDB部署架构
  • 操作系统知识3
  • 华为全联接大会HUAWEI Connect 2024印象(一):OpenEuler
  • uniapp沉浸式导航栏+自定义导航栏组件
  • 深入理解端口、端口号及FTP的基本工作原理
  • CREO教程——2 绘制标准图纸
  • python/requests库的使用/爬虫基础工具/
  • 最新版C/C++通过CLion2024进行Linux远程开发保姆级教学
  • 【Docker】基于docker compose部署artifactory-cpp-ce服务
  • 【车联网安全】车端知识调研
  • 产品经理面试整理-软件产品经理的常用工具
  • SpringBoot框架在文档管理中的创新应用
  • 系统架构笔记-3-信息系统基础知识
  • 探讨MySQL中的GROUP BY语句大小写敏感性
  • SegFormer网络结构的学习和重构
  • CSP-S 2024 提高级 第一轮(初赛) 阅读程序(2)
  • 【OSS安全最佳实践】降低因操作失误等原因导致数据丢失的风险
  • 【C++笔试强训】如何成为算法糕手Day2
  • 【c++】知识点
  • 分布式光伏监控系统 在鄂尔多斯市鄂托克旗某煤矿项目中的应用
  • GPU高性能编程CUDA入门