当前位置: 首页 > article >正文

算法.图论-并查集

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板
    • 4. 并查集习题
      • 4.1 情侣牵手
      • 4.2 相似字符串组

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法
    private static boolean isSameSet(int a, int b){
        return find(a) == find(b);
    }

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法
    private static void union(int a, int b){
        int fa = find(a);
        int fb = find(b);
        if(fa != fb){
            sets--;
            if(size[fa] >= size[fb]){
                father[fb] = fa;
                size[fa] += size[fb];
            }else{
                father[fa] = fb;
                size[fb] += size[fa];
            }
        }
    }

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的


    private static final int MAX_CP = 31;

    private static final int[] father = new int[MAX_CP];

    private static final int[] size = new int[MAX_CP];

    private static final int[] stack = new int[MAX_CP];
    
	//find方法(路径压缩的迭代实现)
    private static int find1(int a){
        int sz = 0;
        while(father[a] != a){
            stack[sz++] = a;
            a = father[a];
        }

        while(sz > 0){
            father[stack[--sz]] = a;
        }

        return father[a];
    }

	//find方法(路径压缩的递归实现)
    private static int find(int a){
        if(father[a] != a){
            father[a] = find(father[a]);
        }
        return father[a];
    }

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;

public class Main {
    private static final int MAXN = 1000001;

    private static final int[] father = new int[MAXN];

    private static final int[] size = new int[MAXN];

    private static final int[] stack = new int[MAXN];

    private static int cnt = 0;

    private static void build(int sz) {
        cnt = sz;
        for (int i = 0; i <= cnt; i++) {
            father[i] = i;
            size[i] = 1;
        }
    }

    private static int find(int n) {
        //下面就是扁平化(路径压缩的处理技巧)
        int capacity = 0;
        while (father[n] != n) {
            stack[capacity++] = n;
            n = father[n];
        }

        //开始改变沿途节点的指向
        while (capacity > 0) {
            father[stack[--capacity]] = n;
        }
        return father[n];
    }

    private static boolean isSameSet(int a, int b) {
        return find(a) == find(b);
    }

    private static void union(int a, int b) {
        //下面的设计就是小挂大的思想
        int fa = find(a);
        int fb = find(b);
        if (fa != fb) {
            if (size[fa] >= size[fb]) {
                father[fb] = fa;
                size[fa] += size[fb];
            } else {
                father[fa] = fb;
                size[fb] += size[fa];
            }
        }
    }

    //我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)
    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        StreamTokenizer in = new StreamTokenizer(br);
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        while (in.nextToken() != StreamTokenizer.TT_EOF) {
            int n = (int)in.nval;
            build(n);
            in.nextToken();
            int m = (int)in.nval;
            for (int i = 0; i < m; i++) {
                in.nextToken();
                int op = (int)in.nval;
                in.nextToken();
                int n1 = (int)in.nval;
                in.nextToken();
                int n2 = (int)in.nval;
                if (op == 1) {
                    out.println(isSameSet(n1, n2) ? "Yes" : "No");
                } else {
                    union(n1, n2);
                }
            }
        }
        out.flush();
        out.close();
        br.close();
    }
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;

public class Main {
    private static final int MAXN = 100001;

    private static final int[] father = new int[MAXN];

    private static final int[] size = new int[MAXN];

    private static final int[] stack = new int[MAXN];

    private static int cnt = 0;

    private static void build(int sz){
        cnt = sz;
        for(int i = 0; i <= cnt; i++){
            father[i] = i;
            size[i] = 1;
        }
    }

    private static int find(int n){
        //下面就是扁平化(路径压缩的处理技巧)
        int capacity = 0;
        while(father[n] != n){
            stack[capacity++] = n;
            n = father[n];
        }

        //开始改变沿途节点的指向
        while(capacity > 0){
            father[stack[--capacity]] = n;
        }
        return father[n];
    }

    private static boolean isSameSet(int a, int b){
        return find(a) == find(b);
    }

    private static void union(int a, int b){
        //下面的设计就是小挂大的思想
        int fa = find(a);
        int fb = find(b);
        if(fa != fb){
            if(size[fa] >= size[fb]){
                father[fb] = fa;
                size[fa] += size[fb];
            }else{
                father[fa] = fb;
                size[fb] += size[fa];
            }
        }
    }
    
    //我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)
    public static void main(String[] args) throws IOException{
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        StreamTokenizer in = new StreamTokenizer(br);
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        while(in.nextToken() != StreamTokenizer.TT_EOF){
            int n = (int)in.nval;
            build(n);
            in.nextToken();
            int m = (int)in.nval;
            for(int i = 0; i < m; i++){
                in.nextToken();
                int op = (int)in.nval;
                in.nextToken();
                int n1 = (int)in.nval;
                in.nextToken();
                int n2 = (int)in.nval;
                if(op == 2){
                    out.println(isSameSet(n1, n2) ? "Y" : "N");
                }else{
                    union(n1, n2);
                }
            }
        }
        out.flush();
        out.close();
        br.close();
    }
}

4. 并查集习题

4.1 情侣牵手

leetcode765.情侣牵手题目链接
在这里插入图片描述

//本题的前置知识可能是置换环(这一题的并查集的思路尤其不好想)
class Solution {
//核心点的分析就是如果一个集合里面有k对情侣, 那么我们至少需要交换 k - 1 次

    private static final int MAX_CP = 31;

    private static final int[] father = new int[MAX_CP];

    private static final int[] size = new int[MAX_CP];

    private static final int[] stack = new int[MAX_CP];

    private static int sets = 0;

    //初始化并查集
    private static void build(int n){
        sets = n;
        for (int i = 0; i < n; i++) {
            father[i] = i;
            size[i] = 1;
        }
    }

    //find方法(路径压缩的实现)
    //find方法(路径压缩的递归实现)
    private static int find(int a){
        if(father[a] != a){
            father[a] = find(father[a]);
        }
        return father[a];
    }

    //isSameSet方法
    private static boolean isSameSet(int a, int b){
        return find(a) == find(b);
    }

    //union方法
    private static void union(int a, int b){
        int fa = find(a);
        int fb = find(b);
        if(fa != fb){
            sets--;
            if(size[fa] >= size[fb]){
                father[fb] = fa;
                size[fa] += size[fb];
            }else{
                father[fa] = fb;
                size[fb] += size[fa];
            }
        }
    }

    public int minSwapsCouples(int[] row) {
        int cpN = row.length / 2;
        build(cpN);
        for(int i = 0; i < row.length; i += 2){
            union(row[i] / 2, row[i + 1] / 2);
        }
        return cpN - sets;
    }
}

4.2 相似字符串组

leetcode839.相似字符串组
在这里插入图片描述

//简单的并查集的应用
class Solution {

    private static final int MAXN = 301;

    private static final int[] father = new int[MAXN];

    private static final int[] size = new int[MAXN];

    private static final int[] stack = new int[MAXN];

    private static int sets = 0;

    //初始化并查集的方式
    private static void build(int n){
        sets = n;
        for(int i = 0; i < n; i++){
            father[i] = i;
            size[i] = 1;
        }
    }

    //find方法
    private static int find(int a){
        int sz = 0;
        while(father[a] != a){
            stack[sz++] = a;
            a = father[a];
        }

        while(sz > 0){
            father[stack[--sz]] = a;
        }

        return father[a];
    }

    //isSameSet方法 
    private static boolean isSameSet(int a, int b){
        return find(a) == find(b);
    }

    //union方法
    private static void union(int a, int b){
        int fa = find(a);
        int fb = find(b);
        if(fa != fb){
            sets--;
            if(size[fa] >= size[fb]){
                size[fa] += size[fb];
                father[fb] = fa;
            }else{
                size[fb] += size[fa];
                father[fa] = fb;
            }
        }
    }

    public int numSimilarGroups(String[] strs) {
        int n = strs.length;
        int m = strs[0].length();
        build(n);
        for(int i = 0; i < n; i++){
            for(int j = i + 1; j < n; j++){
                if (find(i) != find(j)) {
					int diff = 0;
					for (int k = 0; k < m && diff < 3; k++) {
						if (strs[i].charAt(k) != strs[j].charAt(k)) {
							diff++;
						}
					}
					if (diff == 0 || diff == 2) {
						union(i, j);
					}
				}
            }
        }
        return sets;
    }
}

http://www.kler.cn/a/320771.html

相关文章:

  • swarm天气智能体调用流程
  • Vue2: el-table为每一行添加超链接,并实现光标移至文字上时改变形状
  • web作业
  • CES 2025|美格智能高算力AI模组助力“通天晓”人形机器人震撼发布
  • 芯片详细讲解,从而区分CPU、MPU、DSP、GPU、FPGA、MCU、SOC、ECU
  • 【数据结构】航班查询系统:链表的实际运用
  • C++:string类写时拷贝|引用计数
  • git使用方法详解(适合新手)
  • 找免费正版高清图片,就上这8个网站。
  • 深度拆解:如何在Facebook上做跨境电商?
  • 【docker】debian中配置docker(2024年9月)
  • YOLOv8-pose+streamlit 实现人体关键点检测/姿态估计系统(后续可用于健身时的姿态估计,训练纠正等....)
  • 智算中心动环监控:构建高效、安全的数字基础设施@卓振思众
  • 从Unity到Godot
  • Ubuntu22.04安装paddle
  • 超越sora,最新文生视频CogVideoX-5b模型分享
  • 4.SPI外设—LCD小案例
  • 拓数派荣获上海数据交易所“数据治理服务商”认证
  • 无线领夹麦克风哪个牌子好,2024年新款领夹麦克风推荐
  • 回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测
  • 【监控体系搭建一】Docker安装与使用
  • 万界星空科技铜拉丝行业MES系统,实现智能化转型
  • Prometheus使用Pushgateway推送数据
  • 【数据结构】栈和队列(Stack Queue)
  • 统信服务器操作系统ade版【iostat】命令详解
  • LeetCode 136. 只出现一次的数字