当前位置: 首页 > article >正文

C++:模拟实现vector

目录

成员变量与迭代器

size

capacity

empty

迭代器有关函数

实现默认成员函数的前置准备

reserve

​编辑

​编辑

push_back

构造函数

无参构造

迭代器区间构造

n个val来进行构造 

析构函数

拷贝构造函数

赋值重载

增删查改

clear

resize

pop_back

insert

erase

重载[]


成员变量与迭代器

我们还是需要在一个命名空间里模拟实现vector,防止和标准库里的起冲突。

namespace zh
{
	template<class T>
	class vector
	{
	public:
		typedef T* iterator;
		typedef const T* const_iterator;

    private:
	    iterator _start = nullptr;
	    iterator _finish = nullptr;
	    iterator _end_of_storage = nullptr;
    };
}

解释说明:

1.vector是一个非常通用的容器,是一个动态大小的数组,可以存储任意类型的元素,并且能够自动调整大小以适应元素的添加和删除。所以我们的模拟实现要写成类模板

2.vector可以看做顺序表的升级,但是模拟实现vector跟我们以往实现顺序表有所不同,顺序表是使用一个动态开辟的数组、数组有效元素个数size和数组容纳最大有效数据的个数capacity维护的,而模拟实现vector需要三个(模板参数)T* 类型的指针,而vector的迭代器功能恰恰又和T*类型指针类似,所以干脆把T*封装成迭代器。当然迭代器需要有两个版本,普通版本和const版本。

3.参数的含义

_start指向数组首元素,_finish指向最后一个有效元素的下一个位置, _end_of_storage指向数组空间末尾。

通过三个指针也可以模拟出size和capacity的功能。

size

返回有效数据个数的函数

size_t size() const
{
	return _finish - _start;
}

capacity

返回数组最大容纳有效数据个数(容量大小)的函数。

size_t capacity() const
{
	return _end_of_storage - _start;
}

empty

判断数组是否为空,判断_start与_finish是否相等即可

bool empty() const
{
	return _finish == _start;
}

迭代器有关函数

主要实现begin函数和end函数

iterator begin()
{
	return _start;
}

iterator end()
{
	return _finish;
}

const_iterator begin() const
{
	return _start;
}

const_iterator end() const
{
	return _finish;
}

实现默认成员函数的前置准备

reserve

用于vector数组空间不足时扩容的函数(扩容成n个空间)。

void reserve(size_t n)
{
	if (n > capacity())                        //n大于数组容量才扩容
	{
		size_t oldsize = size();               //用oldsize避免新_start和老_finish的问题
                                                
		T* tmp = new T[n];
		//memcpy(tmp, _start, size() * sizeof(T));  //这里是浅拷贝,如果是内置类型,没问题 
                                                    //如果vector存的是自定义类型,就是大坑
		for (size_t i = 0; i < oldsize; ++i)
		{
			tmp[i] = _start[i];
		}
		delete _start;                 //这里delete_start,_finish 和_end_of_storage是野指针

		//更新成员变量
		_start = tmp;
		_finish = tmp + oldsize;               
		_end_of_storage = tmp + n;
	}
}

reserve有几个问题需要注意:

1.开空间的时候要使用new而不要用malloc,因为malloc只是去开空间,不会去调用构造函数。

2.新_start和_finish的问题。

错误示范。

将原有数据拷贝到新空间后,释放了旧空间的资源,_strat指向了新的空间,但是_finish和_end_of_storage还是指向旧空间,这两个指针就变成野指针了。而最关键的是_finish不能被正确赋值。

3.memcpy浅拷贝问题

memcpy(tmp, _start, size() * sizeof(T));

memcpy是浅拷贝,如果vector存的是内置类型,那么浅拷贝就没有问题,如果存的是自定义类型,那浅拷贝就是个大坑。假如vector存的是string类型,那么扩容时,将数据从旧空间拷贝到新空间时,因为是浅拷贝,所以两个空间里的string的_str是同一个地址释放旧空间的时候就连带这把新空间的资源也释放了

这样就扩容失败了,因为你把原空间的数据丢失了,而且搞不好有可能程序还会崩溃。

要解决这个问题,我们就得手动实现深拷贝, 因为new出来的空间如果是自定义类型的话就自动调用构造函数初始化了,所以这里走的是赋值重载来实现深拷贝

push_back

用于在数组末尾尾插一个元素的函数。

void push_back(const T& x)
{
	//插入之前先判断空间是否足够
    if (_finish == _end_of_storage)
	{
		reserve(capacity() == 0 ? 4 : 2 * capacity());
	}

    //插入元素,更新_finish
	*_finish = x;
	_finish++;
}

构造函数

vector的构造函数我们实现无参构造迭代器区间构造n个val构造

无参构造

无参构造其实我们并不需要写,因为已经在成员变声明时给了缺省值,编译器自动生成的无参构造函数走初始化列表满足需求了。但是由于我们写了其他构造函数编译器就不自动生成了

这里时候可以自己写无参构造,也可以用default强制编译器生成(C++11的用法)。

//构造
/*vector()
{}*/

//c++11 强制生成构造
vector() = default;

迭代器区间构造

//类模板的成员函数,还可以继续是函数模版
template<class InputIerator>
vector(InputIerator first, InputIerator last)
{
	while (first != last)
	{
		push_back(*first);	
		++first;
	}
}

这里给这个函数再套一层模板是为了让vector不仅能用vector的迭代器区间构造,还能用其他容器(list、string等)的迭代器来进行构造

这里又有个问题,就是while循环判断条件的!=不能改成<,因为<对于vector的迭代器时可以的,但是对于其他容器的迭代器,如list,last不一定比first要大

n个val来进行构造 

vector(size_t n, const T& val = T())
{
	//先开好空间
	reserve(n);
	for (size_t i = 0; i < n; ++i)
	{
		push_back(val);
	}
}

使用的时候val可能不传参,所以要给缺省值。

因为val的类型不确定,可能是内置类型,也可能是自定义类型。

在不传参使用缺省值时

对于自定义类型,比如strng,先调用构造函数构造一个匿名对象,再拷贝构造给val。(编译器会优化,直接对val进行构造),这样val就有了缺省值

对于内置类型,本来是没有构造函数的说法的,但是为了适应这里,也支持类似类那种使用构造函数初始化的方式。

int a = int();
int b = int(2);
int c(3);
cout << a << endl;
cout << b << endl;
cout << c << endl;

析构函数

直接delete就可以了,把三个迭代器置空。

//析构
~vector()
{
	if (_start)
	{
		delete[] _start;
		_start = _finish = _end_of_storage = nullptr;
	}
}

拷贝构造函数

先开好空间,然后尾插就可以了。

//拷贝构造
vector(const vector<T>& v)
{
	reserve(v.size());
	for (auto& e : v)
	{
		push_back(e);
	}
}

赋值重载

首先实现一个交换函数,然后传值调用,将两个对象交换即可。

//void swap(vector& v) 可以这样写
void swap(vector<T>& v) 
{
	std::swap(_start, v._start);
	std::swap(_finish, v._finish);
	std::swap(_end_of_storage, v._end_of_storage);
}

vector<T>& operator=(vector<T> v)
{
	swap(v);
	return *this;
}

增删查改

clear

不需要真的删除,直接将更改_finish的值即可。

void clear()
{
	_finish = _start;
}

resize

控制有效数据个数。

  1. 若n < size,直接将_finish更改为_start + n即可。
  2. 若_size < n < capacity或者n > capacity,直接扩容成n个空间(空间足够就不会扩容),从_finish拷贝足够数量的val即可。
void resize(size_t n, T val = T())
{
	if (n < size())
	{
		_finish = _start + n;
	}
	else
	{
		reserve(n);
		while (_finish != _start + n)           
		{
			*_finish = val;
			++_finish;
		}
	}
}

pop_back

先判断数组是否为空,尾删一个元素,_finish-- 即可。

void pop_back()
{
	//判断下数组是否为空
	assert(!empty());
	--_finish;
}

insert

在pos位置插入一个元素。

iterator insert(iterator pos, const T& x) //pos不会为0,因为是有效的迭代器
{
	assert(pos >= _start);
	assert(pos <= _finish);

	if (_finish == _end_of_storage)                   //涉及到扩容,pos会失效,pos指向原来的空间
	{
		size_t len = pos - _start;
		reserve(capacity() == 0 ? 4 : 2 * capacity());
		pos = _start + len;
	}
	iterator end = _finish - 1;
	while (end >= pos)
	{
		*(end + 1) = *end;
		--end;
	}

	//插入元素,更新
	*pos = x;
	++_finish;
	return pos;
}

注意的问题:

1.如果插入涉及到了扩容,要提前把pos相对于首元素的相对长度记录下来,扩容完毕后更新pos。因为扩容会导致pos失效。

2.插入之后要返回新元素的迭代器。(这里其实也算迭代器是失效了,因为pos指向的元素发生了更改,迭代器失效了就不要在使用了。)

erase

删除pos位置的元素,删除完后返回删除元素下一位置的迭代器

iterator erase(iterator pos)
{
	assert(pos >= _start);
	assert(pos < _finish);

	iterator it = pos + 1;
	while (it != end())
	{
		*(it - 1) = *it;
		++it;
	}
	--_finish;

	return pos;
}

抛出一个问题,利用迭代器删除vector中所有的偶数。

错误做法

auto it = v.begin();
while (it != v.end())
{
	if (*it % 2 == 0)
	{
		it = v.erase(it);
	}
    
	it++;		
}

删完一个偶数后,it已经是下一元素的迭代器了,it不需要++了。

正确做法

auto it = v.begin();
while (it != v.end())
{
	if (*it % 2 == 0)
	{
		it = v.erase(it);
	}
	else
	{
		++it;
	}
}

重载[]

为了方便访问和修改数组中的元素。

T& operator[](size_t i)
{
	assert(i < size());
	return _start[i];
}

const T& operator[](size_t i) const
{
	assert(i < size());
	return _start[i];
}

通用打印容器函数,套一层模板即可。

注意:

​
template<class Container>
void print_Container(const Container& v)
{
	//typename vector<T>::const_iterator it = v.begin();   //typename标定为类型                          
    //从没有实例化的类模板取出来的可能是类型或者成员变量,编译器无法区分
	auto it = v.begin();                       

	while (it != v.end())
	{
		cout << *it << ' ';
		++it;
	}
	cout << endl;

	/*for (auto num : v)
	{
		cout << num << ' ';
	}
	cout << endl;*/
}

​

未实例化的类取出来的有可能是类型或者成员变量,要加关键字typename告诉编译器是类型不加的话会发生编译错误

当然直接用auto更方便。


拜拜,下期再见😏

摸鱼ing😴✨🎞


http://www.kler.cn/a/325411.html

相关文章:

  • 【C++派生类新增对象的初始化顺序】单继承下派生类新增成员对象的初始化顺序
  • React中组件通信的几种方式
  • 风电电力系统低碳调度论文阅读第一期
  • 使用Axios函数库进行网络请求的使用指南
  • 【Chapter 3】Machine Learning Classification Case_Prediction of diabetes-XGBoost
  • 从零开始学习 sg200x 多核开发之 TF 存储卡根文件系统扩容
  • 2025秋招内推|招联金融
  • 推荐常用的搜索渠道
  • Unity 热更新(HybridCLR+Addressable)-创建Addressable资源
  • H.264与H.265
  • FFmpeg源码:avio_seek函数分析
  • Codeforces Round 301 (Div. 2) C题 Ice Cave(BFS)
  • 昇思MindSpore进阶教程--高级自动微分
  • 基于springboot+小程序的儿童预防接种预约管理系统(疫苗1)(源码+sql脚本+视频导入教程+文档)
  • 依赖倒置原则(学习笔记)
  • PostgreSQL的表碎片
  • 学习Java (五)
  • Go Sonyflake学习与使用
  • 新能源汽车充电桩怎么选?
  • Linux基础(二):磁盘分区
  • js替换css主题变量并切换iconfont文件
  • uniapp中h5环境添加console.log输出
  • 2024年7月大众点评沈阳美食店铺基础信息
  • 数据结构和算法之树形结构(4)
  • springframework Ordered接口学习
  • BOE(京东方)携故宫博物院举办2024“照亮成长路”公益项目落地仪式以创新科技赋能教育可持续发展