当前位置: 首页 > article >正文

【AI学习】Lilian Weng:Extrinsic Hallucinations in LLMs(LLM 的外在幻觉)

来自OpenAI 的 Lilian Weng的《Extrinsic Hallucinations in LLMs》
Date: July 7, 2024 | Estimated Reading Time: 30 min | Author: Lilian Weng

文章链接:https://lilianweng.github.io/posts/2024-07-07-hallucination/

大概看了一下,这篇文章的核心内容和观点是讨论大型语言模型(LLM)中的外在幻觉问题。外在幻觉是指模型生成不真实、捏造、不一致或无意义的内容。同样重要的是,当模型不知道某个事实时,它应该这么说。
文章主要探讨了外在幻觉的原因、检测方法和减少幻觉的策略。

原因:

  1. 训练前数据问题: 预训练数据语料库可能包含过时、缺失或不正确的信息。
  2. 微调新知识: 微调阶段可能引入新的错误信息。(1) LLM 学习具有新知识的微调示例的速度比其他具有与模型预先存在的知识一致的知识的示例慢;(2) 一旦最终学习了具有新知识的例子,它们就会增加模型的幻觉倾向。

幻觉检测:

  • FactualityPrompt: 通过事实和非事实提示组成,使用Wikipedia文档或句子作为事实基础的知识库。
  • 幻觉NE错误和蕴涵比率: 使用实体检测模型和文档级接地,测量未出现在真值文档中的命名实体的比例。
  • FActScore: 将长格式生成分解为多个原子事实,并根据Wikipedia等知识库分别验证每个事实。

减少幻觉的策略:

  1. 检索增强评估: 使用检索来使模型生成奠定基础,有助于减少幻觉。
  2. SAFE: 搜索增强事实评估器,使用语言模型作为代理,在多步骤过程中选代地发出Google搜索查询。
  3. FacTool: 检测各种任务中的事实错误,包括基于知识的QA、代码生成、数学问题解决和科学文献综述。
  4. SelfCheckGPT: 依赖于对来自黑盒LLM的多个样本的事实性错误的一致性检查。
  5. 未知知识的校准: 提示模型生成对无法回答或未知问题的回答可能会触发幻觉。

抗幻觉方法:

  • RAG: 检索增强生成,通过检索相关文档,然后使用相关文档作为额外的上下文生成。
  • RARR: 使用研究和修订进行改造归因,追溯性地使LLM能够通过EditingforAttribution支持对外部证据的归因。
  • FAVA: 使用增强知识进行事实验证,检索相关文档,然后编辑模型输出以避免幻觉错误。

事实性微调:

  • TopicPrefix: 在每个句子前面附加主题以提高对事实的认识。
  • 句子完成损失: 专注于句子的后半部分,因为句子的后半部分包含更多事实知识。

归因微调:

  • WebGPT: 结合文档检索与微调的GPT模型,旨在回答长篇问题以减少幻觉并实现更好的事实准确性。
  • GopherCite: 使用搜索引擎创建支持资料和教学模型来提供参考。

文章最后提供了一个评估基准的附录,列出了用于衡量LLMs中幻觉的各种数据集。

将文章通过在线翻译,转换了贴在下面,供大家参考

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


http://www.kler.cn/a/326670.html

相关文章:

  • git commit应遵循的提交规范
  • openapi回调地址请求不通过
  • 【折腾一上午】Java POI 导出 Excel 自适应列宽行高
  • 人工智能技术在网络安全领域被恶意利用
  • Rust 力扣 - 1423. 可获得的最大点数
  • 《欢乐饭米粒儿9》第五期:用笑声诠释生活,让爱成为日常
  • TS-AI:一种用于多模态个体化脑区划分的深度学习管道,并结合任务对比合成|文献速递-Transformer架构在医学影像分析中的应用
  • 生产环境升级mysql流程及配置主从服务
  • YOLOv8改进 | 主干篇,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1
  • C++ 左值右值引用梳理(一)
  • 蓝桥杯—STM32G431RBT6(RTC时钟获取时间和日期)
  • python 如何引用变量
  • LeetCode 每日一题 最佳观光组合
  • 水波荡漾效果+渲染顺序+简单UI绘制
  • Chromium 屏蔽“缺少 Google API 密钥,因此 Chromium 的部分功能将无法使用。”提示 c++
  • Conda 虚拟环境使用指南,python,anaconda,miniconda
  • MySQL InnoDB 事务commit逻辑分析
  • C++的new关键字
  • 如何在Android上运行Llama 3.2
  • 关于TrustedInstaller权限
  • c++-类和对象-设计立方体类
  • 每天学习一个技术栈 ——【Django Channels】篇(2)
  • ansible实现远程创建用户
  • [BUUCTF从零单排] Web方向 03.Web入门篇之sql注入-1(手工注入详解)
  • Java 编码系列:注解处理器详解与面试题解析
  • Uptime Kuma运维监控服务本地部署结合内网穿透实现远程在线监控