当前位置: 首页 > article >正文

【ChatGPT】Python 实现计算两线段的变换矩阵

作为一个数学专家,请给出下面的这个问题的数学解法;
要求如下:
1. 给出数学推理公式
2. 给出 python 的实现方式

已知条件:
1. 三维空间中,线段L1,L1 由点 A1 (ax1, ay1, az1) 与 B1 (bx1, by1, bz1) 组成; 
2. 三维空间中,空间线段L2, L2 由 点 A2 (ax2, ay2, az2) 与 B2 (bx2, by2, bz2) 组成; 
3. 线段 L2 是由线段 L1  通过 4 * 4 的 变化矩阵 M 得到

求解变换矩阵 M,并将 M 分解为平移矩阵与旋转矩阵;

回答如下:

To solve the problem of finding the transformation matrix that maps line segment to line segment in 3D space, we will utilize concepts from linear algebra. The transformation can be described as a combination of rotation and translation.

1. Mathematical Formulation

Representation of Points: Let:

Points of line segment be and .
Points of line segment be and .
Parameters of Lines: The direction vectors of the line segments are:

Translation : The translation component can be computed as:

Rotation Matrix : To find the rotation matrix that aligns with , we can use the following approach:

Normalize the direction vectors:
Compute the rotation axis using the cross product:
Calculate the angle between the two direction vectors using the dot product:
Use Rodrigues’ rotation formula to construct the rotation matrix .


### 2. Python Implementation
python 实现如下:
```python
import numpy as np

def compute_transformation(A1, B1, A2, B2):
    # Convert points to numpy arrays
    A1 = np.array(A1)
    B1 = np.array(B1)
    A2 = np.array(A2)
    B2 = np.array(B2)

    # Compute direction vectors
    d1 = B1 - A1
    d2 = B2 - A2

    # Compute translation component
    T = A2 - A1

    # Normalize direction vectors
    norm_d1 = np.linalg.norm(d1)
    norm_d2 = np.linalg.norm(d2)
    if norm_d1 == 0 or norm_d2 == 0:
        raise ValueError("Direction vectors must be non-zero")
    
    u = d1 / norm_d1
    v = d2 / norm_d2

    # Compute rotation axis and angle
    rotation_axis = np.cross(u, v)
    angle = np.arccos(np.clip(np.dot(u, v), -1.0, 1.0))

    # If the rotation axis is a zero vector, u and v are parallel
    if np.linalg.norm(rotation_axis) == 0:
        R = np.eye(3)  # No rotation needed
    else:
        rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
        K = np.array([[0, -rotation_axis[2], rotation_axis[1]],
                      [rotation_axis[2], 0, -rotation_axis[0]],
                      [-rotation_axis[1], rotation_axis[0], 0]])
        R = (np.eye(3) + 
             np.sin(angle) * K + 
             (1 - np.cos(angle)) * np.dot(K, K))

    return R, T

A1 = (1, 2, 3)
B1 = (4, 5, 6)
A2 = (7, 8, 9)
B2 = (10, 11, 12)

R, T = compute_transformation(A1, B1, A2, B2)

print("Rotation Matrix R:")
print(R)
print("\nTranslation Vector T:")
print(T)

3. 对代码的解释:

The function compute_transformation takes the endpoints of two line segments as inputs.
It calculates the direction vectors, translation vector, and rotation matrix.
The rotation matrix is calculated using the Rodrigues’ rotation formula approach.
The function returns the rotation matrix and translation vector .
This code should give you a good foundation to find the transformation matrix that maps segment to . Adjust the input values of and to test different segments.


http://www.kler.cn/a/328878.html

相关文章:

  • 解决Windows远程桌面 “为安全考虑,已锁定该用户账户,原因是登录尝试或密码更改尝试过多,请稍后片刻再重试,或与系统管理员或技术支持联系“问题
  • 师生健康监测系统:SpringBoot技术实践
  • Master PDF Editor 下载及详细安装教程
  • Codeforces Round 976 (Div. 2 ABCDE题)视频讲解
  • Django一分钟:使用prefetch_related避免陷入大量的查询中导致严重的性能问题
  • WebGL深究:动画与交互 —— 赋予虚拟世界生命与灵魂
  • YOLOv11尝鲜测试五分钟极简配置
  • SpringBoot整合JPA详解
  • 工控系统组成与安全需求分析
  • leetcode每日一题day21(24.10.1)——最低票价
  • Street View Synthesis with Gaussian Splatting and Diffusion Prior 学习笔记
  • 【Java SE 题库】移除元素(暴力解法)--力扣
  • 室内定位论文整理-20240925期
  • 计算机毕业设计党建学习网站查看发布党建评论留言搜索部署安装/springboot/javaWEB/J2EE/MYSQL数据库/vue前后分离小程序
  • 【SpringCloud】多机部署, 负载均衡-LoadBalance
  • 使用 Seaborn 热图的 5 种方法(Python 教程)
  • Vue+Flask
  • Pencils Protocol 全面推动市场,生态通证 DAPP 将持续通缩
  • 【数据结构初阶】排序算法(下)冒泡排序与归并排序
  • Jupyter Notebook 产生 jupyter_notebook_config.py 配置文件