当前位置: 首页 > article >正文

【堆排】为何使用向下调整法建堆比向上调整法建堆更好呢?

文章目录

  • 前言
  • 一、堆排代码
  • 一、计算使用==向上调整法==建堆的时间复杂度
  • 二、计算使用==向下调整法==插入的时间复杂度
  • 总结


前言

在博主的上一篇博客堆排(链接在这里点击即可)的总结中提出啦使用向下调整法建堆比使用向上调整法建堆更好,是因为使用向上调整法建堆的时间复杂度为O(n*logn),使用向下调整法建堆的时间复杂度为O(n)。接下来博主就教大家如何计算它们的时间复杂度。


一、堆排代码

void Swap(int* x, int* y)
{
	int tmp = *x;
	*x = *y;
	*y = tmp;
}
//向上调整法
void AdjustUp(HPDataType* arr, int child)
{
	int parent = (child - 1) / 2;

	while (child > 0)//不需要等于,child只要走到根节点的位置,根节点没有父节点不需要交换
	{
		if (arr[child] < arr[parent])//若孩子结点比父结点小则交换
		{
			Swap(&arr[parent], &arr[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//向下调整法
void AdjustDown(HPDataType* arr, int parent, int n)
{
	int child = parent * 2 + 1;//左孩子

	while (child < n)
	{
		//找左右孩子中找最小的
		if (child + 1 < n && arr[child] > arr[child + 1])
		{
			child++;
		}
		if (arr[child] < arr[parent])
		{
			Swap(&arr[child], &arr[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
//堆排
void HeapSort(int* arr, int n)
{
	//向上调整法建堆
	for (int i = 0; i < n; i++)
	{
		AdjustUp(arr, i);
	}

	//向下调整算法建堆
	//for (int i = (n-1-1)/2; i >= 0; i--)
	//{
	//	AdjustDown(arr, i , n);
	//}

	//循环将堆顶数据跟最后位置的数据进行交换
	int end = n - 1;
	while (end > 0)
	{
		Swap(&arr[0], &arr[end]);
		AdjustDown(arr, 0, end);
		end--;
	}
}

一、计算使用向上调整法建堆的时间复杂度

for (int i = 0; i < n; i++)
{
	AdjustUp(arr, i);
}
  • 第1层,20个结点,最多需要向上移动0次。
  • 第2层,21个结点,最多需要向下移动1次。
  • 第3层,22个结点,最多需要向上移动2次。
  • 第h-1层,2h-2个结点,最多需要向上移动h-2次。
  • 第h层,2h-1个结点,最多需要向上移动h-1次。
    所以最多移动的次数总和为:
    (1) T(h) = 20(0)+21(1)+22(2)+…+2h-2(h-2)+2h-1(h-1)
    (2) 2T(h) = 21(0)+22(1)+23(2)+…+2h-1(h-2)+2h(h-1)
    (2)-(1) 得
    T(h) = -(21+22+23+…+2h-2+2h-1+2h-1)+2hh
    使用高中阶段学过的等比数列求和公式:S = a1
    (1-qn)/1-q可得
    T(h) = 2(1-2h)+2hh = 2+2h(h-2)
    再根据二叉树的性质:n = 2h-1,h = log2(n+1)可得
    T(n) = 2 + (n+1)(log2(n+1)-2) = (n+1)log2(n+1)-2
    n
    所以向上调整法建堆的时间复杂度为O(logn*n)

二、计算使用向下调整法插入的时间复杂度

for (int i = (n-1-1)/2; i >= 0; i--)
{
	AdjustDown(arr, i , n);
}
  • 第1层,20个结点,最多需要向下移动h-1次。
  • 第2层,21个结点,最多需要向下移动h-2次。
  • 第3层,22个结点,最多需要向下移动h-3次。
  • 第h-1层,2h-2个结点,最多需要向下移动1次。
  • 第h层,2h-1个结点,最多需要向下移动0次。

所以最多移动的次数总和为:
(1) T(h) = 20(h-1)+21(h-2)+22(h-3)+…+2h-2(1)
(2) 2T(h) = 21(h-1)+22(h-2)+23(h-3)+…+2h-1(1)
(2)-(1) 得
T(h) = 21+22+23+…+2h-2+2h-1-20(h-1)
T(h) =20+ 21+22+23+…+2h-2+2h-1-h
使用高中阶段学过的等比数列求和公式:S = a1
(1-qn)/1-q可得
T(h) = 2h-1-h
再根据满二叉树的性质:n = 2h-1,h = log2(n+1)可得
T(n) = n-log2(n+1)
*
所以向下调整法建堆的时间复杂度为O(n)


总结

通过这篇博客相信柚柚们已经清楚向下调整法建堆和向上调整法建堆的时间复杂度怎么计算啦,后期博主还会更新有关数据结构的博客,感兴趣的柚柚们可以关注博主喔~


http://www.kler.cn/news/339130.html

相关文章:

  • Tianrui Green Shield
  • Python知识点:如何使用Google Cloud IoT与Python进行边缘计算
  • ASP.NetCore---I18n(internationalization)多语言版本的应用
  • 智能医疗:Spring Boot医院管理系统开发
  • 【C++ 11】nullptr 空指针
  • 【Python语言进阶(一)】
  • PointNet++网络详解
  • 构建高效团队,内部CRM系统的益处详解
  • Vue2电商平台(五)、加入购物车,购物车页面
  • 修改银河麒麟操作系统V10(SP1)网卡名称为ethx
  • 外贸财务管理必备,6款热门软件优势对比
  • Java虚拟机(JVM)介绍
  • MoveIt2-humble】入门教程----第一个 C++ MoveIt 程序
  • 每天一道面试题5——Linux内核包含哪些部分?
  • open3D release版配置及简单使用
  • PCL 将点云的曲率数据保存至txt
  • 【AI知识点】内部协变量偏移(Internal Covariate Shift)
  • 1打家劫舍三部曲
  • 10.8 sql语句查询(未知的)
  • 等保测评的转型,对于提升我国网络空间的安全防护水平具有重要意义