当前位置: 首页 > article >正文

一元n次多项式加法【数据结构-链表】

一元n次多项式定义如下:

4af0979a94ad4d9ca1ffde8cf298935d.png

其中Ai​为实数,i为不小于0的整数。在完成“一元n次多项式输入输出”题目的基础上实现一元n次多项式的加法。要求用链表实现上述一元n次多项式的操作。

输入格式:

有两个一元n次多项式,例如分别为:
f(X)=3X2+ X+1
g(X)=−2X2−X-1
其中系数为实数,指数取不小于0的整数。输入分为2行,第1行为第1个一元n次多项式,第1个一元n次多项式按照第1项系数,指数 第2项系数,指数 .... 的格式输入,系数和指数以“,”分割,各项的系数和指数之间以空格分割,输入一元n次多项式不要求按指数有序排列,最后以 0,0(即系数=0,指数=0)表示结束。第2行为第2个一元n次多项式,输入格式与第1个一元n次多项式相同。对上面的两个一元n次多项式:

输入样例:

3,2 1,1 1,0 0,0
-2,2 -1,1 -1,0 0,0

输出格式:

输出分为以下3行:第1行输出第1个一元n次多项式,第2行输出第2个一元n次多项式,第3行输出两个一元n次多项式的和。输出要求一元n次多项式的高次项在前,低次项在后,即按指数由大到小排列,实数保留小数点后面1位数,一元多项式为f(X)=0时,输出为f(X)=0.0。对上面2个一元n次多项式的输出为:

输出样例:

f(X)=3.0X^2+X+1.0
g(X)=-2.0X^2-X-1.0
f(X)+g(X)=X^2
#include <stdio.h>
#include <stdlib.h>

typedef struct PolynomialNode    //定义了一个名为PolynomialNode的结构体,用于表示多项式中的一项
{
    double coefficient;          //系数
    int exponent;                //指数
    struct PolynomialNode *next; //指针域
} PolynomialNode;

PolynomialNode* createNode(double coefficient, int exponent) 
{
    PolynomialNode *newNode = (PolynomialNode*)malloc(sizeof(PolynomialNode));
    newNode->coefficient = coefficient;
    newNode->exponent = exponent;
    newNode->next = NULL;
    return newNode;
}

void insertNode(PolynomialNode** head, double coefficient, int exponent) 
{                     //将一个新的项插入到多项式链表中
    PolynomialNode* newNode = createNode(coefficient, exponent);
    if (*head == NULL || exponent > (*head)->exponent) {
        newNode->next = *head;  //如果新项的指数大于当前链表头部的指数
        *head = newNode;        //或者链表为空,则将新项置于链表头部
    } 
	else 
	{                           //否则,遍历链表找到合适的位置插入新项
        PolynomialNode* current = *head;
        while (current->next!= NULL && current->next->exponent > exponent) 
		{              //当前节点的下指针不为空&&当前节点的下指针的指数>当前节点的
            current = current->next;  //refresh当前与下一个
        }
        if (current->exponent == exponent) //如果新项的指数与链表中的某项指数相同,则合并系数
		{
            current->coefficient += coefficient;
            free(newNode);
        } 
		else 
		{
            newNode->next = current->next;
            current->next = newNode;
        }
    }
}

void printPolynomial(PolynomialNode* head, const char* name) 
{
    if (head == NULL) 
	{
        printf("%s=0.0\n", name);
        return;
    }
    PolynomialNode* current = head;
    int firstTerm = 1;
    printf("%s=", name);
    while (current!= NULL) 
	{
        if (current->coefficient == 0) //系数为0
		{
            current = current->next;   //跳过当前项
            continue;
        }
        if (current->coefficient < 0)  //系数小于0
		{
            if (!firstTerm)            //不是第一项
			{
                if (current->exponent == 1) 
				{
                    printf("-X");
                } 
				else if (current->exponent > 1) 
				{
                    if (current->coefficient == -1.0)  //特殊判断
					{
                        printf("-X^%d", current->exponent);
                    } 
					else 
					{
                        printf("%.1fX^%d", current->coefficient, current->exponent);
                    }
                } 
				else         //是第一项
				{
                    printf("%.1f", current->coefficient);
                }
            } 
			else 
			{
                if (current->exponent == 1) 
				{
                    printf("-X");
                } 
				else if (current->exponent > 1) 
				{
                    if (current->coefficient == -1.0) 
					{
                        printf("-X^%d", current->exponent);
                    } 
					else 
					{
                        printf("%.1fX^%d", current->coefficient, current->exponent);
                    }
                } 
				else 
				{
                    printf("%.1f", current->coefficient);
                }
                firstTerm = 0;
            }
        } 
		else         //系数大于0
		{
            if (!firstTerm) 
			{
                if (current->exponent == 1) 
				{
                    printf("+X");
                } 
				else if (current->exponent > 1) 
				{
                    if (current->coefficient == 1.0) 
					{
                        printf("+X^%d", current->exponent);
                    } 
					else 
					{
                        printf("+%.1fX^%d", current->coefficient, current->exponent);
                    }
                } 
				else 
				{
                    printf("+%.1f", current->coefficient);
                }
            } 
			else 
			{
                if (current->exponent == 1) 
				{
                    printf("X");
                } 
				else if (current->exponent > 1) 
				{
                    if (current->coefficient == 1.0) 
					{
                        printf("X^%d", current->exponent);
                    } 
					else 
					{
                        printf("%.1fX^%d", current->coefficient, current->exponent);
                    }
                } 
				else 
				{
                    printf("%.1f", current->coefficient);
                }
                firstTerm = 0;
            }
        }
        current = current->next;
    }
    printf("\n");
}

void freePolynomial(PolynomialNode* head) 
{
    PolynomialNode* current = head;
    while (current!= NULL) 
	{
        PolynomialNode* next = current->next;
        free(current);
        current = next;
    }
}

PolynomialNode* addPolynomials(PolynomialNode* poly1, PolynomialNode* poly2) 
{
    PolynomialNode* result = NULL;
    PolynomialNode* current1 = poly1;
    PolynomialNode* current2 = poly2;
    while (current1!= NULL || current2!= NULL) 
	{             //循环会一直执行,直到两个输入链表都遍历完
        double coefficient;
        int exponent;
        if (current1 == NULL)      //第一个多项式链表已经遍历完
		{                         //从第二个多项式链表current2中取当前项的系数和指数
            coefficient = current2->coefficient;
            exponent = current2->exponent;
            current2 = current2->next;
        } 
		else if (current2 == NULL) //第二个多项式链表已经遍历完
		{                         //从第一个多项式链表current1中取当前项的系数和指数
            coefficient = current1->coefficient;
            exponent = current1->exponent;
            current1 = current1->next;
        } 
		else if (current1->exponent > current2->exponent) //第一个多项式链表中的项指数较大
		{                                                //取第一个多项式链表当前项的系数和指数
            coefficient = current1->coefficient;
            exponent = current1->exponent;
            current1 = current1->next;
        } 
		else if (current1->exponent < current2->exponent) //第二个多项式链表中的项指数较大
		{                                                //取第二个多项式链表当前项的系数和指数
            coefficient = current2->coefficient;
            exponent = current2->exponent;
            current2 = current2->next;
        } 
		else                         //两个多项式链表当前项的指数相同,将它们的系数相加作为新的系数
		{
            coefficient = current1->coefficient + current2->coefficient;
            exponent = current1->exponent;
            current1 = current1->next;
            current2 = current2->next;
        }
        if (coefficient!= 0) 
		{
            insertNode(&result, coefficient, exponent);
        }
    }
    return result;
}

int main() 
{
    PolynomialNode* poly1 = NULL;
    PolynomialNode* poly2 = NULL;
    double coefficient;
    int exponent;

    while (scanf("%lf,%d", &coefficient, &exponent) && coefficient!= 0 || exponent!= 0) 
	{
        if (coefficient == 0 && exponent == 0) 
		{
            break;
        }
        insertNode(&poly1, coefficient, exponent);
    }

    while (scanf("%lf,%d", &coefficient, &exponent) && coefficient!= 0 || exponent!= 0) 
	{
        if (coefficient == 0 && exponent == 0) 
		{
            break;
        }
        insertNode(&poly2, coefficient, exponent);
    }

    // 合并多项式 poly2 中的同类项
    PolynomialNode* tempPoly2 = poly2;
    while (tempPoly2!= NULL && tempPoly2->next!= NULL) 
	{
        if (tempPoly2->exponent == tempPoly2->next->exponent || (tempPoly2->exponent == 1 && tempPoly2->next->exponent == 1)) {
            tempPoly2->coefficient += tempPoly2->next->coefficient;
            PolynomialNode* toFree = tempPoly2->next;
            tempPoly2->next = tempPoly2->next->next;
            free(toFree);
        } 
		else 
		{
            tempPoly2 = tempPoly2->next;
        }
    }

    printPolynomial(poly1, "f(X)");
    printPolynomial(poly2, "g(X)");

    PolynomialNode* sum = addPolynomials(poly1, poly2);
    printf("f(X)+g(X)");
    if (sum == NULL) 
	{
        printf("0.0\n");
    } 
	else 
	{
        printPolynomial(sum, "");
    }

    freePolynomial(poly1);
    freePolynomial(poly2);
    freePolynomial(sum);

    return 0;
}

 

 

 


http://www.kler.cn/a/350064.html

相关文章:

  • PID 控制算法(二):C 语言实现与应用
  • Java实现简易银行账户管理系统
  • HDFS的Shell操作
  • AI模型提示词(prompt)优化-实战(一)
  • NIO | 什么是Java中的NIO —— 结合业务场景理解 NIO (二)
  • 可替代CentOS 7的Linux操作系统选型
  • shell 脚本批量更新本地git仓库
  • ZW3D二次开发_UI_ZW3D表单使用QT原生表单
  • WPFDeveloper正式版发布
  • docker数据管理和网络通信+docker实例+dockerfile镜像实战
  • GNU/Linux - Info和Man的区别
  • 嵌软面试准备必背代码总结(持续更新中)
  • 网站的加载速度对于谷歌seo有多重要?
  • centos系列图形化 VNC server配置,及VNC viewer连接,2024年亲测有效
  • 【markdown语法】使用 LaTeX 语法编写数学公式
  • Chromium 书签加载过程分析c++
  • 6本“灌水神刊”SCI,沾边可录,可选非OA,1个月Accept!
  • 掌握 C# 内存管理与垃圾回收机制
  • css 翻页效果
  • 酵母魔法:精酿啤酒发酵的艺术与科学
  • Linux——快捷键
  • 多入口+vite+vue3预渲染方案
  • 程序员转行方向推荐
  • 基于 java springboot+layui仓库管理系统设计和实现
  • 使用Windows创建一个MFC应用【带界面】
  • uniapp顶部提示栏实现