当前位置: 首页 > article >正文

Opencv:FisherFace算法实现人脸检测

目录

简介

实现步骤

1. 图像读取和预处理

2. 创建和训练识别器

3. 图像识别和结果展示

4、结果展示

总结


简介

在人工智能和计算机视觉领域,人脸识别是一项非常有趣且实用的技术。本文将向您介绍如何使用OpenCV库以及FisherFace算法实现人脸识别。我们将一步步分析代码,并展示如何将其应用到一个简单的项目中。

人脸识别技术通过分析人脸图像的特征,从而识别出图像中的人。OpenCV是一个强大的计算机视觉库,提供了多种人脸识别算法。FisherFace算法是基于线性判别分析(LDA)的一种人脸识别方法,它能够有效地在特征空间中对人脸进行分类。

实现步骤

1. 图像读取和预处理

首先,我们需要读取和预处理图像。预处理包括灰度化和调整图像大小,以便输入到人脸识别算法中。

import cv2
import numpy as np

# 定义一个函数用于读取和预处理图像
def image_re(image):
    a = cv2.imread(image, 0)  # 读取图像,灰度模式
    a = cv2.resize(a, (120, 180))  # 调整图像大小
    return a

# 读取训练图像
a = image_re('hg1.png')
b = image_re('hg2.png')
c = image_re('pyy1.png')
d = image_re('pyy2.png')

# 将图像添加到列表中
images = [a, b, c, d]
# 为每个图像分配标签
labels = [0, 0, 1, 1]


 

2. 创建和训练识别器

接下来,我们使用FisherFace算法创建一个识别器,并用训练图像和标签来训练它。

# 读取待识别的图像
pre_image = cv2.imread('hg3.png', 0)
pre_image = cv2.resize(pre_image, (120, 180))

# 创建FisherFace识别器
recognizer = cv2.face.FisherFaceRecognizer_create()
# 训练识别器
recognizer.train(images, np.array(labels))

 

3. 图像识别和结果展示

现在,我们可以使用训练好的识别器来预测待识别图像的标签。

# 预测待识别图像的标签和置信度
label, confidence = recognizer.predict(pre_image)

# 创建一个字典用于标签到名称的映射
dic = {0: 'hg', 1: 'pyy'}

# 打印识别结果
print('这个人是:', dic[label])
print('置信度:', confidence)

# 在图像上添加识别结果
aa = cv2.putText(cv2.imread('hg3.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('xx', aa)
cv2.waitKey(60000)

 

在上面的代码中,我们首先使用recognizer.predict方法预测待识别图像的标签和置信度。然后,我们使用cv2.putText在图像上添加识别结果。

4、结果展示

 

总结

本文展示了如何使用OpenCV库和FisherFace算法实现人脸识别。我们首先读取和预处理图像,然后创建和训练识别器,最后进行图像识别并展示结果。FisherFace算法因其简单性和准确性,在人脸识别领域仍然非常受欢迎。


http://www.kler.cn/a/350195.html

相关文章:

  • 【cuda学习日记】3.3 CUDA执行模型--展开循环
  • 基于Python django的音乐用户偏好分析及可视化系统设计与实现
  • 网络安全(渗透)
  • 9. 神经网络(一.神经元模型)
  • 【生产力工具】ChatGPT for Windows桌面版本安装教程
  • JS宏进阶:正则表达式的使用
  • Mybatis核心配置文件的详解
  • openai chatgpt 大语言模型
  • 基于Python实现电影推荐系统
  • 选择排序-求和表达式
  • POMO:强化学习的多个最优策略优化(2020)(完)
  • Spring Boot知识管理:智能搜索与分析
  • 人工智能之动物识别专家系统
  • 初级网络工程师之从入门到入狱(四)
  • JSONArray根据指定字段去重
  • Linux 操作系统——扫盲教程5
  • docker 安装与使用
  • Midjourney中文版:创意启航,绘梦成真
  • 【vue】前置知识学习
  • 模型微调方法LoRA
  • DC系列靶机-DC5
  • k8s微服务
  • Vue预渲染:深入探索prerender-spa-plugin与vue-meta-info的联合应用
  • 关于Linux下C++程序内存dump的分析和工具
  • Java项目:160 基于springboot物流管理系统(PPT+论文+说明文档)
  • C++面向对象--------继承篇