当前位置: 首页 > article >正文

dfs和bfs能解决的问题

一.理解暴力穷举之dfs和bfs

暴力穷举

暴力穷举是在解决问题中最常用的手段,而dfs和bfs算法则是这个手段的两个非常重要的工具。
其实,最简单的穷举法是直接遍历,如数列求和,遍历一个数组即可求得所问答案,这与我在前两篇博客中讲述的动态规划算法执行方式其实是一样的,其特点我们说过,有三个“可分解,可一次解决,可储存”,可分解是不管有多大多复杂的数据都能用同一种办法解决的前提,可一次解决,代表每一个子问题的解决答案即是当前最优解,也是全局最优解的子解,这叫做 无后效性 ,无后效性其实表面意思是局部决策对全局决策无关,但准确来说, 是局部决策的最优解之外的决策永远不会成为全局决策的子决策 ,最后若可储存子问题的答案,我们就可以实现直接遍历或动态规划得到我们所需要的答案。

dfs和bfs的特点

在前言我们提到了直接遍历的穷举办法,而动态规划也是其中之一,具有”可分解,可一次解决,可存储“的特点,而dfs和bfs与它们的唯一区别就是”不可一次解决“,也就是并非有最优解,子问题的每一个决策都有可能是全局解的子解,这叫做有后效性,但准确来说,是局部决策都可能会成为全局决策的子决策,那么如何解决这类问题呢,dfs和bfs算法就是这类问题的天敌

二.掌握dfs和bfs解决问题的方法

1.dfs通过其能够“回溯”的本领解决有后效性

例题

题目链接

分析

题目问的是,在给定n*n棋盘内,棋子位置相互不冲突的情况下,摆放在棋盘区域的棋子个数为k的方案数是多少
1.可先放前面的棋子,再放后面的棋子(可分解)
2.对每个棋盘位置都有放或不放两种决策,每个棋子的这两种决策都可能满足题意(有后效性)
3.在从前到后决策的过程中,可记录已放棋子个数(可存储)

代码

#include<iostream>
#include<cstdio>

using namespace std;

const int N = 100;
bool col[N],row[N];
char g[N][N];
int cnt = 0,n,m;
void dfs(int x,int y,int k)
{
    if(x == n) return;
    if(k == m) 
    {
        cnt++;
        return;
    }
    if(y == n)
    {
        y = 0;
        x++;
    }
    dfs(x,y+1,k);//先递归遍历左子树,即不放皇后的操作
    if(!col[y]&&!row[x]&&(g[x][y] == '#'))
    {
        col[y] = row[x] = true;
        dfs(x,y+1,k+1);//再递归遍历右子树
        col[y] = row[x] = false;
    }
}
int main()
{
    while(1)
    {
        scanf("%d%d",&n,&m);
        if(n == -1&&m == -1) break;
        for(int i = 0;i<n;i++)
            for(int j = 0;j<n;j++)
                cin>>g[i][j];
        dfs(0,0,0);
        printf("%d\n",cnt);
        cnt = 0;
    }
    return 0;
}

2.bfs通过其能够“排队”的本领解决有后效性

例题

题目链接

分析

题目问的是,在给定L*R*C迷宫内,从“S”走到“E”至少需要多少分钟
1.可一步一步走(可分解)
2.对每一步都有上下左右前后,每一步的决策都可能满足题意(有后效性)
3.在从前到后决策的过程中,可记录已用掉多少分钟(可存储)

代码

#define _CRT_SECURE_NO_WARNINGS
//#define LOCAL
#include <iostream>
#include <cstring>
#include <queue>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=35;
int L,R,C;
int sx,sy,sz,ex,ey,ez;
bool flag;
char g[N][N][N];
bool st[N][N][N];
int dist[N][N][N];
struct Node
{
    int z,x,y;
};
int dx[]={1,-1,0,0,0,0};
int dy[]={0,0,1,-1,0,0};
int dz[]={0,0,0,0,1,-1};
void bfs(int sz,int sx,int sy)
{
    memset(dist,0x3f,sizeof dist);
    Node input;
    input.z=sz,input.x=sx,input.y=sy;
    queue<Node>q;
    q.push(input);
    st[sz][sx][sy]=1;
    dist[sz][sx][sy]=0;
    while(q.size())
    {
        Node t=q.front();
        if(t.z==ez&&t.x==ex&&t.y==ey)
        {
            flag=1;
            break;
        }
        q.pop();
        for(int i=0;i<6;i++)
        {
            int a=t.z+dz[i];
            int b=t.x+dx[i];
            int c=t.y+dy[i];
            if(a<0||b<0||c<0||a>=L||b>=R||c>=C)continue;
            if(st[a][b][c]||g[a][b][c]=='#')continue;
            st[a][b][c]=1;
            Node tmp;
            tmp.z=a,tmp.x=b,tmp.y=c;
            q.push(tmp);
            dist[a][b][c]=dist[t.z][t.x][t.y]+1;
        }
    }
}
void solve()
{
    while(~scanf("%d%d%d",&L,&R,&C)&&(L||R||C))
    {
        for(int i=0;i<L;i++)
            for(int j=0;j<R;j++)
                scanf("%s",g[i][j]);
        
     
        for(int i=0;i<L;i++)
            for(int j=0;j<R;j++)
                for(int k=0;k<C;k++)
                {
                    if(g[i][j][k]=='S')sz=i,sx=j,sy=k;
                    if(g[i][j][k]=='E')ez=i,ex=j,ey=k;
                }
        memset(st,0,sizeof st);
        flag=0;
        bfs(sz,sx,sy);
        if(flag) printf("Escaped in %d minute(s).\n",dist[ez][ex][ey]);
        else puts("Trapped!");
    }
    return;
}


int main()
{
#ifdef LOCAL
    freopen("data.in", "r", stdin);
    freopen("data.out", "w", stdout);
#endif
    int t = 1;//cin>>t;
    while(t--){
        solve();
    }
    return 0;
}

~感谢观看❥(^_-)


http://www.kler.cn/a/3594.html

相关文章:

  • WPF1-从最简单的xaml开始
  • 2. CSS 中的单位
  • CSS语言的数据类型
  • C/C++、网络协议、网络安全类文章汇总
  • Mysql数据库锁
  • Linux-C/C++--深入探究文件 I/O (下)(文件共享、原子操作与竞争冒险、系统调用、截断文件)
  • 给准备面试网络工程师岗位的应届生一些建议
  • CeresPCL 曲线拟合
  • 【LeetCode刷题-Python】移除元素
  • QT表格控件实例(Table Widget 、Table View)
  • Cookie 和 Session的区别
  • Python接口自动化 ❀ 详解 Cookie-Session登录验证 的工作原理
  • 机器学习:基于KNN对葡萄酒质量进行分类
  • 【SpringAOP】AOP面向切面编程
  • 微信小程序面试题(day08)
  • OpenHarmony实战STM32MP157开发板 “控制” Hi3861开发板 -- 中篇
  • 【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
  • Java中的深拷贝和浅拷贝
  • 1.4、第三阶段 MySQL数据库
  • 记一次若依后台管理系统渗透
  • 010-Ansible数组
  • hastcat
  • 学习操作系统的必备教科书《操作系统:原理与实现》| 文末赠书4本
  • Java中的日期时间类
  • K8S + GitLab + Jenkins自动化发布项目实践(一)
  • C# 计算方差