当前位置: 首页 > article >正文

队列-我的基础算法刷题之路(六)

在这里插入图片描述

本篇博客旨在整理记录自已对队列的一些总结,以及刷题的解题思路,同时希望可给小伙伴一些帮助。本人也是算法小白,水平有限,如果文章中有什么错误之处,希望小伙伴们可以在评论区指出来,共勉 💪。
本篇文章主要是讲一下基本的队列以及刷题,暂不过多涉及双端、阻塞队列。

文章目录

    • 一、队列的概述
    • 二、Java队列的特性
    • 三、Java 队列的基本操作
    • 四、队列的代码实现
      • 4.1、链表实现
      • 4.2、数组实现
    • 五、刷题
      • 1. 二叉树层序遍历
      • 2. 设计循环队列
    • 最后

一、队列的概述

队列(queue) 是以顺序的方式维护的一组数据集合,在一端添加数据,从另一端移除数据。习惯来说,添加的一端称为,移除的一端称为,就如同生活中的排队买商品。队列遵循先入先出、后入后出的基本原则

队列的基本结构:

1
2
3
4
进队
出队

二、Java队列的特性

队列主要分为阻塞和非阻塞,有界和无界;按功能分:双端队列、优先队列、延迟队列、其他队列

Queue
按阻塞分类
按大小分类
按功能分类
阻塞队列
非阻塞队列
有界队列
无界队列
普通队列
优先队列
双端队列
延迟队列
其他队列

三、Java 队列的基本操作

  • add(E e):将元素 e 插入到队列末尾,如果插入成功,则返回 true;如果插入失败(即队列已满),则会抛出异常;
  • remove():移除队首元素,若移除成功,则返回 true;如果移除失败(队列为空),则会抛出异常;
  • remove(Object o):移除指定的元素,若移除成功,则返回 true;如果移除失败(队列为空),则会抛出异常;
  • offer(E e):将元素 e 插入到队列末尾,如果插入成功,则返回 true;如果插入失败(即队列已满),则返回 false;
  • poll():移除并获取队首元素,若成功,则返回队首元素;否则返回 null;
  • peek():获取队首元素,若成功,则返回队首元素;否则返回 null;
  • isEmpty():队列是否为空;
  • size():队列长度;

四、队列的代码实现

定义一个简化的队列接口:

public interface Queue<E> {

    /**
     * 向队列尾插入值
     * @param value 待插入值
     * @return 插入成功返回 true, 插入失败返回 false
     */
    boolean offer(E value);

    /**
     * 从对列头获取值, 并移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E poll();

    /**
     * 从对列头获取值, 不移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E peek();

    /**
     * 检查队列是否为空
     * @return 空返回 true, 否则返回 false
     */
    boolean isEmpty();

    /**
     * 检查队列是否已满
     * @return 满返回 true, 否则返回 false
     */
    boolean isFull();
}

4.1、链表实现

使用单向环形带哨兵链表方式来实现队列

代码:

public class LinkedListQueue<E>
        implements Queue<E>, Iterable<E> {

    private static class Node<E> {
        E value;
        Node<E> next;

        public Node(E value, Node<E> next) {
            this.value = value;
            this.next = next;
        }
    }

    private Node<E> head = new Node<>(null, null);
    private Node<E> tail = head;
    private int size = 0;
    private int capacity = Integer.MAX_VALUE;

    {
        tail.next = head;
    }

    public LinkedListQueue() {
    }

    public LinkedListQueue(int capacity) {
        this.capacity = capacity;
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        Node<E> added = new Node<>(value, head);
        tail.next = added;
        tail = added;
        size++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        Node<E> first = head.next;
        head.next = first.next;
        if (first == tail) {
            tail = head;
        }
        size--;
        return first.value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return head.next.value;
    }

    @Override
    public boolean isEmpty() {
        return head == tail;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node<E> p = head.next;
            @Override
            public boolean hasNext() {
                return p != head;
            }
            @Override
            public E next() {
                E value = p.value;
                p = p.next;
                return value;
            }
        };
    }
}

4.2、数组实现

环形数组实现好处:

  1. 对比普通数组,起点和终点更为自由,不用考虑数据移动;
  2. ”环“意味着不会存在【越界】问题;
  3. 数组性能更佳;
  4. 环形数组比较适合实现有界队列、RingBuffer等;

代码:

/* 下标含义:
 * cur 当前指针位置
 * step 前进步数
 * length 数组长度
 */
public class ArrayQueue<E> implements Queue<E>, Iterable<E>{

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int length;

    @SuppressWarnings("all")
    public ArrayQueue(int capacity) {
        length = capacity + 1;
        array = (E[]) new Object[length];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail] = value;
        tail = (tail + 1) % length;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head];
        head = (head + 1) % length;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head];
    }

    @Override
    public boolean isEmpty() {
        return tail == head;
    }

    @Override
    public boolean isFull() {
        return (tail + 1) % length == head;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;
            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p];
                p = (p + 1) % array.length;
                return value;
            }
        };
    }
}

五、刷题

1. 二叉树层序遍历

题目:给你二叉树的根节点 root ,返回其节点值的 层序遍历 。(即逐层地,从左到右访问所有节点)。

输入输出样例:

示例一:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例二:
输入:root = [1]
输出:[[1]]
示例三:
输入:root = [1]
输出:[[1]]

提示:

  • 树中节点数目在范围 [0, 2000]
  • -1000 <= Node.val <= 1000

解题代码:

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new ArrayList<>();
        if(root == null) {
            return result;
        }
        LinkedListQueue<TreeNode> queue = new LinkedListQueue<>();
        queue.offer(root);
        int c1 = 1;		// 本层节点个数
        while (!queue.isEmpty()) {
            int c2 = 0; 	// 下层节点个数
            List<Integer> level = new ArrayList<>();
            for (int i = 0; i < c1; i++) {
                TreeNode node = queue.poll();
                level.add(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                    c2++;
                }
                if (node.right != null) {
                    queue.offer(node.right);
                    c2++;
                }
            }
            c1 = c2;
            result.add(level);
        }
        return result;
    }

    // 自定义队列
    static class LinkedListQueue<E> {

        private static class Node<E> {
            E value;
            Node<E> next;

            public Node(E value, Node<E> next) {
                this.value = value;
                this.next = next;
            }
        }

        private final Node<E> head = new Node<>(null, null);
        private Node<E> tail = head;
        int size = 0;
        private int capacity = Integer.MAX_VALUE;

        {
            tail.next = head;
        }

        public LinkedListQueue() {
        }

        public LinkedListQueue(int capacity) {
            this.capacity = capacity;
        }

        public boolean offer(E value) {
            if (isFull()) {
                return false;
            }
            Node<E> added = new Node<>(value, head);
            tail.next = added;
            tail = added;
            size++;
            return true;
        }

        public E poll() {
            if (isEmpty()) {
                return null;
            }
            Node<E> first = head.next;
            head.next = first.next;
            if (first == tail) {
                tail = head;
            }
            size--;
            return first.value;
        }

        public E peek() {
            if (isEmpty()) {
                return null;
            }
            return head.next.value;
        }

        public boolean isEmpty() {
            return head == tail;
        }

        public boolean isFull() {
            return size == capacity;
        }
    }
}

2. 设计循环队列

题目:设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。

  • Front: 从队首获取元素。如果队列为空,返回 -1 。

  • Rear: 获取队尾元素。如果队列为空,返回 -1 。

  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。

  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。

  • isEmpty(): 检查循环队列是否为空。

  • isFull(): 检查循环队列是否已满。

示例:

MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3
circularQueue.enQueue(1);  // 返回 true
circularQueue.enQueue(2);  // 返回 true
circularQueue.enQueue(3);  // 返回 true
circularQueue.enQueue(4);  // 返回 false,队列已满
circularQueue.Rear();  // 返回 3
circularQueue.isFull();  // 返回 true
circularQueue.deQueue();  // 返回 true
circularQueue.enQueue(4);  // 返回 true
circularQueue.Rear();  // 返回 4

提示:

  • 所有的值都在 0 至 1000 的范围内;

  • 操作数将在 1 至 1000 的范围内;

  • 请不要使用内置的队列库。

解题代码:

class MyCircularQueue {
    int k, he, ta;
    int[] nums;

    public MyCircularQueue(int _k) {
        k = _k;
        nums = new int[k];

    }
    
    public boolean enQueue(int value) {
        if (isFull()) return false;
        nums[ta % k] = value;
        return  ++ta >= 0;
    }
    
    public boolean deQueue() {
        if (isEmpty()) return false;
        return ++he >= 0;
    }
    
    public int Front() {
        return isEmpty() ?-1 : nums[he % k];
    }
    
    public int Rear() {
        return isEmpty() ? - 1 : nums[(ta - 1) % k];

    }
    
    public boolean isEmpty() {
        return he == ta;
    }
    
    public boolean isFull() {
        return ta - he == k;
    }
}

最后

对各位小伙伴有帮助的话,希望可以点赞❤️+收藏⭐,谢谢各位大佬~~🙌🙌🙌


http://www.kler.cn/a/3612.html

相关文章:

  • 使用vue-next-admin框架后台修改动态路由
  • 自然语言处理(NLP)领域相关模型概述
  • Hadoop•搭建完全分布式集群
  • 数据结构-二叉树
  • 基于Python django的音乐用户偏好分析及可视化系统设计与实现
  • RV1126+FFMPEG推流项目(8)AENC音频编码模块
  • TCP/IP socket
  • 什么是Java的垃圾回收机制?
  • 算法:贪婪算法、分而治之
  • 数学原理—嵌入矩阵
  • 【密码学复习】第四讲分组密码(三)
  • 【HTML系列】第一章 · HTML入门
  • Linux:centos内核优化详解
  • java.sql.Date和java.util.Date的区别
  • 多线程代码案例-阻塞队列
  • SpringBoot系列 logback-spring日志配置使用记录以及解决依赖包冲突问题
  • python基础语法(下)
  • Echarts实现图表自适应屏幕分辨率
  • docker安装Redis高可用(一主二从三哨兵)
  • MP4怎么转换成MP3格式?两种方法帮你实现
  • 搭建一个双系统个人服务器
  • 水果新鲜程度检测系统(UI界面+YOLOv5+训练数据集)
  • dfs和bfs能解决的问题
  • 给准备面试网络工程师岗位的应届生一些建议
  • CeresPCL 曲线拟合
  • 【LeetCode刷题-Python】移除元素