当前位置: 首页 > article >正文

YOLO11结合传统图像增强算法 | 让你的模型无惧黑暗 | 包含端到端推理代码 | 低照度图像增强

原图YOLO11目标检测传统图像增强 + YOLO11目标检测

目录

一 低照度图像增强

二 YOLO11

三 YOLO11结合传统图像增强算法

① 代码

② 效果图



一 低照度图像增强

【低照度图像增强系列】使用SSR/MSR/MSRCR/MSRCP/automatedMSRCR算法对低照度图像进行增强处理的实践 - 点击此处即可跳转

二 YOLO11

【YOLOv11】ultralytics最新作品yolov11 AND 模型的训练、推理、验证、导出 以及 使用 - 点击此处即可跳转

安装 YOLO11:

# Clone the ultralytics repository
git clone https://github.com/ultralytics/ultralytics.git

# 创建conda 环境yolov11
conda create -n yolov11 python=3.9
conda activate yolov11

# Navigate to the cloned directory
cd ultralytics
# Install the package in editable mode for development
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install onnx -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxslim -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

# opencv
pip install opencv-python -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-contrib-python -i  https://pypi.tuna.tsinghua.edu.cn/simple

三 YOLO11结合传统图像增强算法

YOLO11结合传统图像增强算法,让你的模型无惧黑暗

① 代码

from ultralytics import YOLO
import cv2
import numpy as np


def singleScaleRetinex(img, sigma):
    # cv2.GaussianBlur( SRC,ksize,sigmaX [,DST [,sigmaY [,borderType ] ] ] ) → DST
    # ksize为高斯核大小。 width、height 可以不同,但必须是正数和奇数。它们可以为零,此时会根据给定的sigma大小自动计算一个尺寸。
    # 参数sigmaX是必填参数,x方向的标准差,决定了卷积核x方向高斯分布的形状。这个sigmaX值越小,则核中心值越大,周围值下降的越快(表现为高瘦);
    # 相反,这个值越大,则核中心值越小,周围值下降的越慢(表现为矮胖)。
    retinex = np.log10(img) - np.log10(cv2.GaussianBlur(img, (0, 0), sigma))
    return retinex


def multiScaleRetinex(img, sigma_list):
    retinex = np.zeros_like(img)
    for sigma in sigma_list:
        retinex += singleScaleRetinex(img, sigma)
    retinex = retinex / len(sigma_list)
    return retinex


def colorRestoration(img, alpha, beta):
    img_sum = np.sum(img, axis=2, keepdims=True)
    color_restoration = beta * (np.log10(alpha * img) - np.log10(img_sum))
    return color_restoration


def simplestColorBalance(img, low_clip, high_clip):
    total = img.shape[0] * img.shape[1]
    for i in range(img.shape[2]):
        # # np.unique对数据去重后从小到大排序
        unique, counts = np.unique(img[:, :, i], return_counts=True)
        current = 0
        for u, c in zip(unique, counts):
            if float(current) / total < low_clip:
                low_val = u
            if float(current) / total < high_clip:
                high_val = u
            current += c
        img[:, :, i] = np.maximum(np.minimum(img[:, :, i], high_val), low_val)
    return img


def MSRCP(img, sigma_list, low_clip, high_clip):
    img = np.float64(img) + 1.0
    intensity = np.sum(img, axis=2) / img.shape[2]
    retinex = multiScaleRetinex(intensity, sigma_list)
    intensity = np.expand_dims(intensity, 2)
    retinex = np.expand_dims(retinex, 2)
    intensity1 = simplestColorBalance(retinex, low_clip, high_clip)
    intensity1 = (intensity1 - np.min(intensity1)) / (np.max(intensity1) - np.min(intensity1)) * 255.0 + 1.0
    img_msrcp = np.zeros_like(img)
    for y in range(img_msrcp.shape[0]):
        for x in range(img_msrcp.shape[1]):
            B = np.max(img[y, x])
            A = np.minimum(256.0 / B, intensity1[y, x, 0] / intensity[y, x, 0])
            img_msrcp[y, x, 0] = A * img[y, x, 0]
            img_msrcp[y, x, 1] = A * img[y, x, 1]
            img_msrcp[y, x, 2] = A * img[y, x, 2]
    img_msrcp = np.uint8(img_msrcp - 1.0)
    return img_msrcp


def deal_img_Result(imgpath):
    # 加载图像
    im = cv2.imread(imgpath)
    MSRCP_Result = MSRCP(im, [15, 80, 100], 0.01, 0.99)
    cv2.imwrite("tmp.jpg", MSRCP_Result)
    pass


def imgEnhanceYolo(model_path, img_path):
    deal_img_Result(img_path)
    model = YOLO(model_path)  # load a custom model
    # Predict with the model
    results = model("tmp.jpg", conf=0.3)
    for result in results:
        # boxes = result.boxes  # Boxes object for bounding box outputs
        # masks = result.masks  # Masks object for segmentation masks outputs
        # keypoints = result.keypoints  # Keypoints object for pose outputs
        # probs = result.probs  # Probs object for classification outputs
        # obb = result.obb  # Oriented boxes object for OBB outputs
        result.show(line_width=1, font_size=1, color_mode='class')  # display to screen
        result.save(filename="enhance_result.jpg")  # save to disk
    pass

def Onlyyolo(model_path, img_path):
    # Load a model
    model = YOLO(model_path)  # load a custom model
    # Predict with the model
    results = model.predict(img_path, conf=0.3)
    # Process results list
    for result in results:
        result.show(line_width=1, font_size=1, color_mode='class')  # display to screen
        result.save(filename="result.jpg")  # save to disk
    pass


if __name__ == '__main__':
    Onlyyolo("yolo11s.pt", "data/difficult/test1.jpg")
    imgEnhanceYolo("yolo11s.pt", "data/difficult/test1.jpg")
    pass

② 效果图

单独YOLO检测结果:

将原始图像经过传统图像增强算法处理后,YOLO11检测结果如下:

至此,本文分享的内容就结束啦。

如果对YOLO11结合传统图像增强算法的实践感兴趣欢迎留言后续会持续更新遇见便是缘,感恩遇见


http://www.kler.cn/a/371753.html

相关文章:

  • 【llm/ollama/qwen】在本地部署qwen2.5-coder并在vscode中集成使用代码提示功能
  • ubuntu22.04 的录屏软件有哪些?
  • IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)
  • 运放输入偏置电流详解
  • 什么是cline?
  • (七)人工智能进阶之人脸识别:从刷脸支付到智能安防的奥秘,小白都可以入手的MTCNN+Arcface网络
  • OpenCV视觉分析之目标跟踪(5)目标跟踪类TrackerMIL的使用
  • 《Windows PE》17.3 FSG壳
  • 怎么把word文档拆分成2个word文档,拆分后原格式保持不变
  • 机器学习结课项目报告
  • Es概念理解 ▎Es索引库操作 ▎Es文档操作
  • MySQL 9从入门到性能优化-创建触发器
  • 显示器时不时黑一下是什么原因?
  • DDoS攻击趋势令人担忧,安全防御体系构建指南
  • 自研小程序-心情追忆
  • 【云原生】云原生与DevOps的结合:提升软件开发与交付的效率
  • 2-134 基于matlab的图像边缘检测
  • 腾讯共享wifi项目全解析!头部服务商系统质量大测评!
  • 2024年10月实测安装支持 winxp的最后一个python版本 2.7.18 和python 3.4.4版本,你觉得还能正常安装吗?
  • 【Linux】MySQL部署
  • 【Java网络编程】从套接字(Socket)概念到UDP与TCP套接字编程
  • chat_gpt回答:qt中,常见格式及格式转换
  • 【数据集】MODIS地表温度数据(MOD11)
  • 程序员必看!AI如何助你工作开挂!
  • verilog实现一个5bit序列检测器
  • word拷贝学号到excel