当前位置: 首页 > article >正文

使用pytorch实现LSTM预测交通流

原始数据:

免费可下载原始参考数据

预测结果图:

根据测试数据test_data的真实值real_flow,与模型根据测试数据得到的输出结果pre_flow

完整源码:

#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as Data
from torchsummary import summary
import math
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import time
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
from matplotlib.font_manager import FontProperties  # 画图时可以使用中文

# 加载数据
f = pd.read_csv(r'C:\Users\14600\Desktop\AE86.csv')


# 从新设置列标
def set_columns():
    columns = []
    for i in f.loc[2]:
        columns.append(i.strip())
    return columns


f.columns = set_columns()
f.drop([0, 1, 2], inplace=True)
# 读取数据
data = f['Total Carriageway Flow'].astype(np.float64).values[:, np.newaxis]


class LoadData(Dataset):
    def __init__(self, data, time_step, divide_days, train_mode):
        self.train_mode = train_mode
        self.time_step = time_step
        self.train_days = divide_days[0]
        self.test_days = divide_days[1]
        self.one_day_length = int(24 * 4)
        # flow_norm (max_data. min_data)
        self.flow_norm, self.flow_data = LoadData.pre_process_data(data)
        # 不进行标准化
        # self.flow_data = data

    def __len__(self, ):
        if self.train_mode == "train":
            return self.train_days * self.one_day_length - self.time_step
        elif self.train_mode == "test":
            return self.test_days * self.one_day_length
        else:
            raise ValueError(" train mode error")

    def __getitem__(self, index):
        if self.train_mode == "train":
            index = index
        elif self.train_mode == "test":
            index += self.train_days * self.one_day_length
        else:
            raise ValueError(' train mode error')
        data_x, data_y = LoadData.slice_data(self.flow_data, self.time_step, index,
                                             self.train_mode)
        data_x = LoadData.to_tensor(data_x)
        data_y = LoadData.to_tensor(data_y)
        return {"flow_x": data_x, "flow_y": data_y}

    # 这一步就是划分数据
    @staticmethod
    def slice_data(data, time_step, index, train_mode):
        if train_mode == "train":
            start_index = index
            end_index = index + time_step
        elif train_mode == "test":
            start_index = index - time_step
            end_index = index
        else:
            raise ValueError("train mode error")
        data_x = data[start_index: end_index, :]
        data_y = data[end_index]
        return data_x, data_y

    # 数据与处理
    @staticmethod
    def pre_process_data(data, ):
        norm_base = LoadData.normalized_base(data)
        normalized_data = LoadData.normalized_data(data, norm_base[0], norm_base[1])
        return norm_base, normalized_data

    # 生成原始数据中最大值与最小值
    @staticmethod
    def normalized_base(data):
        max_data = np.max(data, keepdims=True)  # keepdims保持维度不变
        min_data = np.min(data, keepdims=True)
        # max_data.shape  --->(1, 1)
        return max_data, min_data

    # 对数据进行标准化
    @staticmethod
    def normalized_data(data, max_data, min_data):
        data_base = max_data - min_data
        normalized_data = (data - min_data) / data_base
        return normalized_data

    @staticmethod
    # 反标准化  在评价指标误差以及画图的使用使用
    def recoverd_data(data, max_data, min_data):
        data_base = max_data - min_data
        recoverd_data = data * data_base - min_data
        return recoverd_data

    @staticmethod
    def to_tensor(data):
        return torch.tensor(data, dtype=torch.float)


# 划分数据
divide_days = [25, 5]
time_step = 5
batch_size = 48
train_data = LoadData(data, time_step, divide_days, "train")
test_data = LoadData(data, time_step, divide_days, "test")
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, )
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, )


# LSTM构建网络
class LSTM(nn.Module):
    def __init__(self, input_num, hid_num, layers_num, out_num, batch_first=True):
        super().__init__()
        self.l1 = nn.LSTM(
            input_size=input_num,
            hidden_size=hid_num,
            num_layers=layers_num,
            batch_first=batch_first
        )
        self.out = nn.Linear(hid_num, out_num)

    def forward(self, data):
        flow_x = data['flow_x']  # B * T * D
        l_out, (h_n, c_n) = self.l1(flow_x, None)  # None表示第一次 hidden_state是0
        #         print(l_out[:, -1, :].shape)
        out = self.out(l_out[:, -1, :])
        return out


# 定义模型参数
input_num = 1  # 输入的特征维度
hid_num = 50  # 隐藏层个数
layers_num = 3  # LSTM层个数
out_num = 1
lstm = LSTM(input_num, hid_num, layers_num, out_num)
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters())

# 训练模型
lstm.train()
epoch_loss_change = []
for epoch in range(30):
    epoch_loss = 0.0
    start_time = time.time()
    for data_ in train_loader:
        lstm.zero_grad()
        predict = lstm(data_)
        loss = loss_func(predict, data_['flow_y'])
        epoch_loss += loss.item()
        loss.backward()
        optimizer.step()
    epoch_loss_change.append(1000 * epoch_loss / len(train_data))
    end_time = time.time()
    print("Epoch: {:04d}, Loss: {:02.4f}, Time: {:02.2f} mins".format(epoch, 1000 * epoch_loss / len(train_data),
                                                                      (end_time - start_time) / 60))
plt.plot(epoch_loss_change)

# 评价模型
lstm.eval()
with torch.no_grad():  # 关闭梯度
    total_loss = 0.0
    pre_flow = np.zeros([batch_size, 1])  # [B, D],T=1 # 目标数据的维度,用0填充
    real_flow = np.zeros_like(pre_flow)
    for data_ in test_loader:
        pre_value = lstm(data_)
        loss = loss_func(pre_value, data_['flow_y'])
        total_loss += loss.item()
        # 反归一化
        pre_value = LoadData.recoverd_data(pre_value.detach().numpy(),
                                           test_data.flow_norm[0].squeeze(1),  # max_data
                                           test_data.flow_norm[1].squeeze(1),  # min_data
                                           )
        target_value = LoadData.recoverd_data(data_['flow_y'].detach().numpy(),
                                              test_data.flow_norm[0].squeeze(1),
                                              test_data.flow_norm[1].squeeze(1),
                                              )
        pre_flow = np.concatenate([pre_flow, pre_value])
        real_flow = np.concatenate([real_flow, target_value])
    pre_flow = pre_flow[batch_size:]
    real_flow = real_flow[batch_size:]
#     # 计算误差
mse = mean_squared_error(pre_flow, real_flow)
rmse = math.sqrt(mean_squared_error(pre_flow, real_flow))
mae = mean_absolute_error(pre_flow, real_flow)
print('均方误差---', mse)
print('均方根误差---', rmse)
print('平均绝对误差--', mae)

# 画出预测结果图
font_set = FontProperties(fname=r"C:\Windows\Fonts\simsun.ttc", size=15)  # 中文字体使用宋体,15号
plt.figure(figsize=(15, 10))
plt.plot(real_flow, label='Real_Flow', color='r', )
plt.plot(pre_flow, label='Pre_Flow')
plt.xlabel('测试序列', fontproperties=font_set)
plt.ylabel('交通流量/辆', fontproperties=font_set)
plt.legend()
# 预测储存图片
# plt.savefig('...\Desktop\123.jpg')

plt.show()



http://www.kler.cn/a/376335.html

相关文章:

  • Linux shell 批量验证端口连通性
  • 【Java数据结构】排序
  • 探索 SolidJS:一款高速的前端框架
  • 简述mysql 主从复制原理及其工作过程,配置一主两从并验证
  • 包文件分析器 Webpack Bundle Analyzer
  • AT8870单通道直流电机驱动芯片
  • 【排序】常见的八大排序算法
  • STM32 从0开始系统学习5
  • 基于javaweb(springboot+mybatis)网站建设服务管理系统设计和实现以及文档报告设计
  • C语言简介
  • 训练和部署Qwen2.5,实战教程步骤,训练qwen2.5教程,vLLM,Open WebUI,LLaMA-Factory
  • Golang文件操作
  • python开发工具是选择vscode还是pycharm?两款软件优缺点对照!
  • 电商领域软件系统实战:基于TiDB的分布式数据库应用
  • 求最大公约数,最小公倍数
  • 集成旺店通旗舰版售后单至MySQL数据库
  • leetcode-88-合并两个有序数组
  • 江协科技STM32学习- P33 实验-软件I2C读写MPU6050
  • 【攻防实战】手把手带你打穿某集团内网(上)
  • RTX5/FreeRTOS全家桶源码工程综合实战模板集成CANopen组件(2024-10-30)
  • IT界的大神-003- 史蒂夫·乔布斯 (Steve Jobs)
  • 字体反爬 fontTools | ddddocr
  • 高德地图如何标注店铺名称和位置信息?
  • timm使用笔记
  • 20221403郑骁恒第八周预习报告
  • 基于单片机的智能婴儿监控系统设计(论文+源码)