当前位置: 首页 > article >正文

2、片元着色器之有向距离场(SDF)运算:并集、差集、交集

1、并集

float sdCircle(vec2 uv,float r){
    return length(uv)-r;
}
float sdRect(vec2 uv,float r){
    return max(abs(uv.x),abs(uv.y))-r;
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
    float w = 1.0/iResolution.y;
	// 计算纹理坐标
    vec2 uv = fragCoord/iResolution.xy;
    // 将纹理坐标系原点移动到屏幕中央
    uv-=0.5;
	// 调整 x 轴比例,使得坐标系纵横比一致
    uv.x*=iResolution.x/iResolution.y;
    vec3 col = vec3(0.0);
	// `sdRect(uv - vec2(0.1, 0.1), 0.2)`计算当前 uv 坐标到中心在 (0.2, 0.2)、半径为 0.2 的矩形的距离
    float r= sdRect(uv-vec2(0.1,0.1),0.2);
    // 大于0代表像素点不在矩形范围内
    r = r > 0.0 ? 0.0:1.0;
   
    float c = sdCircle(uv-vec2(-0.1,-0.1),0.2);
    c = c > 0.0 ? 0.0:1.0;
	
	// 并集就是像素属于圆或者矩形都可以着色,即r=1 or c=1
    float result = max(r,c);//r和c只能为0或1,取最大值即有一个为1结果就是1

    col = mix(col,vec3(1.0,0.0,1.0),result);
    
    fragColor = vec4(col,1.0);
}

在这里插入图片描述

2、差集

float sdCircle(vec2 uv,float r){
    return length(uv)-r;
}
float sdRect(vec2 uv,float r){
    return max(abs(uv.x),abs(uv.y))-r;
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
    float w = 1.0/iResolution.y;
	// 计算纹理坐标
    vec2 uv = fragCoord/iResolution.xy;
    // 将纹理坐标系原点移动到屏幕中央
    uv-=0.5;
	// 调整 x 轴比例,使得坐标系纵横比一致
    uv.x*=iResolution.x/iResolution.y;
    vec3 col = vec3(0.0);
	// `sdRect(uv - vec2(0.1, 0.1), 0.2)`计算当前 uv 坐标到中心在 (0.2, 0.2)、半径为 0.2 的矩形的距离
    float r= sdRect(uv-vec2(0.1,0.1),0.2);
    // 大于0代表像素点不在矩形范围内
    r = r > 0.0 ? 0.0:1.0;
   
    float c = sdCircle(uv-vec2(-0.1,-0.1),0.2);
    c = c > 0.0 ? 0.0:1.0;
	
	// 差集就是像素只属于圆或者只属于矩形才能着色,即(r=1 and c=0)&&(r=0 and c=1)
    float result = abs(r-c);

    col = mix(col,vec3(1.0,0.0,1.0),result);
    
    fragColor = vec4(col,1.0);
}

在这里插入图片描述

3、交集

float sdCircle(vec2 uv,float r){
    return length(uv)-r;
}
float sdRect(vec2 uv,float r){
    return max(abs(uv.x),abs(uv.y))-r;
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
    float w = 1.0/iResolution.y;
	// 计算纹理坐标
    vec2 uv = fragCoord/iResolution.xy;
    // 将纹理坐标系原点移动到屏幕中央
    uv-=0.5;
	// 调整 x 轴比例,使得坐标系纵横比一致
    uv.x*=iResolution.x/iResolution.y;
    vec3 col = vec3(0.0);
	// `sdRect(uv - vec2(0.1, 0.1), 0.2)`计算当前 uv 坐标到中心在 (0.2, 0.2)、半径为 0.2 的矩形的距离
    float r= sdRect(uv-vec2(0.1,0.1),0.2);
    // 大于0代表像素点不在矩形范围内
    r = r > 0.0 ? 0.0:1.0;
   
    float c = sdCircle(uv-vec2(-0.1,-0.1),0.2);
    c = c > 0.0 ? 0.0:1.0;
	
	// 交集就是像素既属于圆又属于矩形才能着色,即(r=1 and c=1)&&(r=1 and c=1)
    float result = r*c;

    col = mix(col,vec3(1.0,0.0,1.0),result);
    
    fragColor = vec4(col,1.0);
}

在这里插入图片描述


http://www.kler.cn/a/376503.html

相关文章:

  • Python 数组
  • linux查看系统架构的命令
  • 7、lvm逻辑卷和磁盘配额
  • Windows 命令提示符(cmd)中输入 mysql 并收到错误消息“MySQL不是内部或外部命令,也不是可运行的程序或批处理文件?
  • Python酷库之旅-第三方库Pandas(187)
  • 让Chrome⽀持⼩于12px 的⽂字⽅式有哪些?区别?
  • go语言中interface之间嵌入与struct之间的嵌入实现多态
  • aws boto3 下载文件
  • 螺旋式开发是不是就是敏捷开发?
  • Jenkins面试整理-如何在 Jenkins 中进行并行构建?
  • 手把手写Linux第一个小程序 - 进度条(5种版本)
  • OpenSSH用户枚举漏洞修复——ubuntu升级ssh版本
  • 线程函数和线程启动的几种不同形式
  • 掌握ElasticSearch(七):相关性评分
  • Axios-Mock-Adapter mock数据
  • 《卷积、卷积操作、卷积神经网络原理探索》
  • 3. 探索 Netty 的粘包与拆包解决方案
  • ARM base instruction -- mneg
  • 正点原子阿尔法ARM开发板-IMX6ULL(十一)——IIC协议和SPI协议--AP3216C环境光传感器和ICM20608六轴传感器
  • 在Zetero中调用腾讯云API的输入密钥的问题
  • 【Linux】信号三部曲——产生、保存、处理
  • ES跟Kafka集成
  • git 切换分支
  • 一个运维牛人对运维规则的10个总结
  • 秒懂Linux之Socket编程(四)
  • 支持向量机SVM与自然语言处理基础小结