当前位置: 首页 > article >正文

2024年大厂AI大模型面试题精选与答案解析

前言

随着AI市场,人工智能的爆火,在接下来的金九银十招聘高峰期,各大科技巨头和国有企业将会对AGI人才的争夺展开一场大战,为求职市场注入了新的活力。

为了助力求职者在面试中展现最佳状态,深入理解行业巨头的选拔标准变得至关重要。尤其是对于AGI(Artificial General Intelligence,通用人工智能)领域的求职者而言,掌握一手的面试真题,不仅能让你洞悉面试官的考察重点,还能帮助你针对性地提升自己的技能和知识储备,让你在众多候选人中独树一帜。

鉴于此,我们精心整理了今年热门大厂的AGI面试题集,涵盖从基础知识到前沿技术的全方位内容,包括但不限于百度、阿里、字节跳动等知名企业的精选题目。无论你是在为即将到来的面试做准备,还是希望通过系统学习来完善自己的AGI技术体系,这份资料都将是你宝贵的资源。

在这里插入图片描述

由于文章篇幅原因,下面就给大家展示最高频的50道面试题,大家也可以尝试着自己回答一下这些问题,顺便就给自己查漏补缺了。有需要完整面试题+答案解析的朋友,可以下滑到文末领取!!!

  1. 简述GPT和BERT的区别
  2. 讲一下GPT系列模型是如何演进的?
  3. 为什么现在的大模型大多是decoder-only的架构?
  4. 讲一下生成式语言模型的工作机理
  5. 哪些因素会导致LLM的偏见?
  6. LLM中的因果语言建模与掩码语言建模有什么区别?
  7. 如何减轻LLM中的幻觉现象?
  8. 解释ChatGPT的零样本和少样本学习的概念
  9. 你了解大型语言模型中的哪些分词技术?
  10. 如何评估大语言模型(LLMs)的性能?
  11. 如何缓解LLMs重复读问题?
  12. 请简述Transformer基本原理
  13. 为什么Transformer的架构需要多头注意力机制?
  14. transformers需要位置编码吗?
  15. transformer中,同一个词可以有不同的注意力权重吗?
  16. Wordpiece与BPE之间的区别是什么?
  17. 有哪些常见的优化LLMs输出的技术?
  18. GPT-3拥有的1750亿参数,是怎么算出来的?
  19. 温度系数和top-p,top-k参数有什么区别?
  20. 为什么transformer块使用LayerNorm而不是BatchNorm?
  21. 介绍一下postlayernorm和prelayernorm的区别
  22. 什么是思维链(CoT)提示?
  23. 你觉得什么样的任务或领域适合用思维链提示?
  24. 你了解ReAct吗,它有什么优点?
  25. 解释一下langchainAgent的概念
  26. langchain有哪些替代方案?
  27. langchaintoken计数有什么问题?如何解决?
  28. LLM预训练阶段有哪几个关键步骤?
  29. RLHF模型为什么会表现比SFT更好?
  30. 参数高效的微调(PEFT)有哪些方法?
  31. LORA微调相比于微调适配器或前缀微调有什么优势?
  32. 有了解过什么是稀疏微调吗?
  33. 训练后量化(PTQ)和量化感知训练(QAT)与什么区别?
  34. LLMs中,量化权重和量化激活的区别是什么?
  35. AWQ量化的步骤是什么?
  36. 介绍一下GPipe推理框架
  37. 矩阵乘法如何做张量并行?
  38. 请简述下PPO算法流程,它跟TRPO的区别是什么?
  39. 什么是检索增强生成(RAG)?
  40. 自前主流的中文向量模型有哪些?
  41. 为什么LLM的知识更新很困难?
  42. RAG和微调的区别是什么?
  43. 大模型一般评测方法及基准是什么?
  44. 什么是KVCache技米,它真体是如何实现的?
  45. DeepSpeed推理对算子融合做了哪些优化?
  46. 简述一下FlashAttention的原理
  47. MHA,GQA,MQA三种注意力机制的区别是什么?
  48. 请介绍一下微软的ZeRO优化器
  49. PagedAttention的原理是什么,解决了LLM中的什么问题?
  50. 什么是投机采样技术,请举例说明?

即使你目前尚未有面试计划,定期复习和研究这些面试题,也能帮助你保持对AGI领域最新动态的敏感度,为未来的职业道路奠定坚实的基础。

在这里插入图片描述

在这里插入图片描述

完整面试题领取方式:扫描下方二维码即可

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述


http://www.kler.cn/a/377360.html

相关文章:

  • 探索C/C++的奥秘之string类
  • [Unity Demo]从零开始制作空洞骑士Hollow Knight第十九集:制作过场Cutscene系统
  • 京东零售推荐系统可解释能力详解
  • 前端入门一之CSS知识详解
  • [论文][环境]3DGS+Colmap环境搭建_WSL2_Ubuntu22.04 - 副本
  • 金华迪加 现场大屏互动系统 mobile.do.php 任意文件上传漏洞复现
  • ffmpeg常用命令
  • RabbitMQ的主题模式
  • ensp中acl的使用
  • Vue页面带参数跳转
  • UE5 材质篇 0 创建一个材质
  • 如何在社媒平台上使用代理IP来保护帐号安全
  • solidity selfdestruct合约销毁
  • C语言专题
  • CSS元素类型(二)
  • 单个相机矫正畸变
  • 【图解版】力扣第121题:买卖股票的最佳时机
  • 使用贪心策略求解糖果罐调整次数
  • C# 单个函数实现各进制数间转换
  • 设计模式 - 简单工厂模式
  • 使用官网tar包制作OpenSSL及OpenSSH rpm包进行升级安装(OpenSSH_9.9p1, without OpenSSL未解决)
  • 在平衡中追寻高度:探秘AVL树的自我调节之美
  • 基础算法——排序算法(冒泡排序,选择排序,堆排序,插入排序,希尔排序,归并排序,快速排序,计数排序,桶排序,基数排序,Java排序)
  • 【已解决】element-plus配置主题色后,sass兼容问题。set-color-mix-level() is...in Dart Sass 3
  • 分布式光伏系统开发数字化解决方案
  • ASRPRO 记事本2