当前位置: 首页 > article >正文

计算机视觉知识点(一)——交并比(IoU)及其若干改进

交并比(IoU)

  • 前言
  • IoU
    • 公式及示意图
    • IoU Loss
    • 缺点
  • GIoU Loss
    • 公式及示意图
    • 缺点
  • DIoU
    • 公式及示意图
  • CIoU


前言

目标检测是一个常见的计算机视觉任务,在目标检测任务中,交并比作为评判检测框的标准具有很重要的意义,在实际的应用中,人们又对最初的IoU进行了诸多的改进。本文将对IoU以及他的改进形式的思路以及公式进行详细通俗的介绍。

IoU

IoU是最早的用于评价预测框与实际框差距的标准,并被用于设置关于预测框回归的损失函数,其思路就是计算预测框与实际框相交区域的面积以及相并区域的面积

假设我们是在这样一张图片上进行目标检测
在这里插入图片描述

那么我们令蓝框为真实框,绿框为预测框,以这个图片的人脸检测为例介绍IoU

公式及示意图

I o U = T ∩ P T ∪ P , 其中 T 为实际框, P 为预测框 IoU=\frac{T \cap P}{T \cup P},其中T为实际框,P为预测框 IoU=TPTP,其中T为实际框,P为预测框

通俗来看
在这里插入图片描述
从直观上讲,就如上图,我们假设蓝框是真实框,绿框为预测框,上下红色阴影部分的面积之比就是IoU

示意图
在这里插入图片描述

IoU Loss

IoU越大说明真实框与预测框的重合度越高,即越好,所以我们可以使用IoU重建损失函数,一般有两种方式
I o U   L o s s = 1 − I o U 或 I o U   L o s s = − l n I o U IoU \space Loss =1-IoU或IoU\space Loss=-lnIoU IoU Loss=1IoUIoU Loss=lnIoU

缺点

失效情况我们首先来看图
在这里插入图片描述
如果真实框与预测框没有重合区域,就会出现这样的情况
在这里插入图片描述
这种情况并不是少数,因为在模型训练初期,模型的参数趋近于混乱,所以基本上预测框和乱标的没什么太大差别,如果真实框与预测框没有相重合,拟合会较为困难,因为所有的没有重合的损失值都为1,并且没有指明梯度下降的合理方向。他的问题是只考虑了真实框与预测框的相交情况,并没有考虑框的位置关系

GIoU Loss

公式及示意图

G I o U   L o s s = 1 − I o U + ∣ C − T ∪ P ∣ ∣ C ∣ ,其中 T 为真实框, P 为预测框, C 为两个框的最小边界 GIoU\space Loss=1-IoU+\frac{|C-T \cup P|}{|C|},其中T为真实框,P为预测框,C为两个框的最小边界 GIoU Loss=1IoU+CCTP,其中T为真实框,P为预测框,C为两个框的最小边界
在这里插入图片描述
如果是上述不相交的情况
在这里插入图片描述
此时虽然1-IoU仍然为1,但是加入的一项会使得两个不相交的框距离越远损失越大,这样可以通过新加入的这一项继续进行梯度下降,这里的GIoU Loss可以大于1

缺点

当一个框被另一个框框住的时候,被框住的框无论在哪个位置,得出的GIoU Loss的值都是完全相同的,这种情况下又会影响梯度下降的方向
在这里插入图片描述
在这里插入图片描述
在这种情况下,绿框在蓝框里面,无论绿框如何移动,只要它还在蓝框内部,他的损失值就不变,显然这也是不利于框的拟合的,为了解决这种情况,可以采用DIoU

DIoU

公式及示意图

D I o U   L o s s = 1 − I o U + ρ 2 ( c T , c P ) d 2 其中 ρ 2 ( c T , c P ) 是真实框中心 ( c T ) 与预测框中心 ( c P ) 的欧氏距离 d 2 是两框对角线距离的平方 DIoU \space Loss=1-IoU+\frac{\rho^2(cT,cP)}{d^2} \\其中\rho^2(cT,cP)是真实框中心(cT)与预测框中心(cP)的欧氏距离 \\ d^2是两框对角线距离的平方 DIoU Loss=1IoU+d2ρ2(cT,cP)其中ρ2(cT,cP)是真实框中心(cT)与预测框中心(cP)的欧氏距离d2是两框对角线距离的平方
在这里插入图片描述
使用DIoU时,不仅可以解决框不相交的问题,又解决了框在内部情况下遇到的问题,此时我们考虑了框的重合度和中心点的距离,还只剩下高宽比这种评价指标。如果深入理解DIoU可以发现在DIoU中,通过IoU和中心距离比的协调,高宽比实际上已经隐含在里边了,不过为了更加容易收敛,仍然可以在多考虑高宽比这一条件并加到损失函数中去

CIoU

这个损失函数画图并不是很好表示,所以只对公式进行讲解,如果理解不了也可以使用DIoU,DIoU也已经达到了很好的效果了
C I o U   L o s s = 1 − I o U + ρ 2 ( c T , c P ) d 2 + α v 其中 ρ 2 ( c T , c P ) 是真实框中心 ( c T ) 与预测框中心 ( c P ) 的欧氏距离 d 2 是两框对角线距离的平方 CIoU \space Loss=1-IoU+\frac{\rho^2(cT,cP)}{d^2}+ \alpha v \\其中\rho^2(cT,cP)是真实框中心(cT)与预测框中心(cP)的欧氏距离 \\ d^2是两框对角线距离的平方 CIoU Loss=1IoU+d2ρ2(cT,cP)+αv其中ρ2(cT,cP)是真实框中心(cT)与预测框中心(cP)的欧氏距离d2是两框对角线距离的平方
v = 4 π 2 ( a r c t a n w T h T − a r c t a n w P h P ) 2 v=\frac{4}{\pi ^2}(arctan\frac{wT}{hT}-arctan\frac{wP}{hP})^2 v=π24(arctanhTwTarctanhPwP)2
α = v 1 − I o U + v \alpha=\frac{v}{1-IoU}+v α=1IoUv+v
其中 w T , h T 是真实框的高宽, w P , h P 是预测框的高宽 其中wT,hT是真实框的高宽,wP,hP是预测框的高宽 其中wThT是真实框的高宽,wPhP是预测框的高宽


http://www.kler.cn/a/3788.html

相关文章:

  • MySQL面试题2025 每日20道【其四】
  • 在 Babylon.js 中使用 Gizmo:交互式 3D 操作工具
  • C++实现Point2D类 有限元基础类
  • HTML知识点复习
  • C语言之装甲车库车辆动态监控辅助记录系统
  • SQL-leetcode—626. 换座位
  • python例程:AI智能联系人管理的程序
  • 跟内存有关的笔试题
  • JavaScript中的for in和for of的区别(js的for循环)
  • Vue 实现图片监听鼠标滑轮滚动实现图片缩小放大功能
  • Spring学习流程介绍
  • 跨境电商卖家工具——跨境卫士内容介绍
  • 华为OD机试用java实现 -【最多获得的短信条数】(2023-Q1 新题)
  • 【Linux】计算机网络1
  • 前端布局小案例,分享3个漂亮的卡片组件
  • 【多线程】CAS
  • 最小生成树kruskal-修建公路1
  • 过等保堡垒机选择云堡垒机可以吗?有推荐的吗?
  • linxu学习之进程
  • 第十四届蓝桥杯三月真题刷题训练——第 23 天
  • day1 计算机组成与结构考点汇总
  • 使用Docker 一键部署SpringBoot和SpringCloud项目
  • 软件测试面试题 —— 整理与解析(3)
  • Docker容器高级篇
  • Vue(3)-vue中的Ajax、Vuex、路由及UI组件库
  • 【Linux】[万字] Linux下的文件操作 及 Linux文件描述符fd 详解